A. | $\frac{13}{65}$ | B. | $\frac{15}{65}$ | C. | $\frac{48}{65}$ | D. | $\frac{63}{65}$ |
分析 由條件利用誘導(dǎo)公式求得cosα 和sinβ 的值,再利用同角三角函數(shù)的基本關(guān)系求得sinα和cosβ的值,利用兩角和差的余弦公式求得cos(α-β)=cosαcosβ+sinαsinβ 的值.
解答 解:函數(shù)f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=4sin(α+$\frac{π}{2}$)=4cosα=$\frac{16}{5}$,
∴cosα=$\frac{4}{5}$.
∵f(3β+$\frac{5π}{2}$)=4sin(β+π)=-4sinβ=-$\frac{20}{13}$,
∴sinβ=$\frac{5}{13}$,
∵α,β∈[0,$\frac{π}{2}$],
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{3}{5}$,cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{12}{13}$.
則cos(α-β)=cosαcosβ+sinαsinβ=$\frac{4}{5}•\frac{12}{13}$+$\frac{3}{5}•\frac{5}{13}$=$\frac{63}{65}$,
故選:D.
點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x<log2x<${({\frac{1}{2}})^x}$ | B. | 2x<${({\frac{1}{2}})^x}$<log2x | C. | ${({\frac{1}{2}})^x}$<log2x<2x | D. | log2x<${({\frac{1}{2}})^x}$<2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com