20.已知函數(shù)f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=$\frac{16}{5}$,f(3β+$\frac{5π}{2}$)=-$\frac{20}{13}$,其中α,β∈[0,$\frac{π}{2}$],則cos(α-β)的值為( 。
A.$\frac{13}{65}$B.$\frac{15}{65}$C.$\frac{48}{65}$D.$\frac{63}{65}$

分析 由條件利用誘導(dǎo)公式求得cosα 和sinβ 的值,再利用同角三角函數(shù)的基本關(guān)系求得sinα和cosβ的值,利用兩角和差的余弦公式求得cos(α-β)=cosαcosβ+sinαsinβ 的值.

解答 解:函數(shù)f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=4sin(α+$\frac{π}{2}$)=4cosα=$\frac{16}{5}$,
∴cosα=$\frac{4}{5}$.
∵f(3β+$\frac{5π}{2}$)=4sin(β+π)=-4sinβ=-$\frac{20}{13}$,
∴sinβ=$\frac{5}{13}$,
∵α,β∈[0,$\frac{π}{2}$],
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{3}{5}$,cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{12}{13}$.
則cos(α-β)=cosαcosβ+sinαsinβ=$\frac{4}{5}•\frac{12}{13}$+$\frac{3}{5}•\frac{5}{13}$=$\frac{63}{65}$,
故選:D.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知O為坐標(biāo)原點(diǎn),M是雙曲線C:x2-y2=4上的任意一點(diǎn),過(guò)點(diǎn)M作雙曲線C的某一條漸近線的垂線,垂足為N,則|ON|•|MN|的值為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-10y+18≤0}\\{y≥|{x-a}|+5}\end{array}}$,x,y∈R,若由不等式組圍成的區(qū)域?yàn)镻,設(shè)兩曲線的交點(diǎn)為A,B,C(a,5)且C∈P;
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若a=0,求△ABC的面積;
(Ⅲ)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),都有不等式f(x)+xf′(x)>0成立,若a=40.2f(40.2),b=(log43)f(log43),c=(log4$\frac{1}{16}$)f(log4$\frac{1}{16}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若0<x<1,則2x,${({\frac{1}{2}})^x}$,log2x之間的大小關(guān)系為( 。
A.2x<log2x<${({\frac{1}{2}})^x}$B.2x<${({\frac{1}{2}})^x}$<log2xC.${({\frac{1}{2}})^x}$<log2x<2xD.log2x<${({\frac{1}{2}})^x}$<2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a,b,c為正實(shí)數(shù),給出以下結(jié)論:
①若a-2b+3c=0,則$\frac{^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,則a+2b的最小值是4;
③若a(a+b+c)+bc=4,則2a+b+c的最小是2$\sqrt{2}$;
④若a2+b2+c2=4,則$\sqrt{5}$ab+$\sqrt{2}$bc的最大值是2$\sqrt{7}$.
其中正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC中,${\overrightarrow{AB}^2}-(\overrightarrow{AB}•\overrightarrow{AC}+\overrightarrow{BC}•\overrightarrow{BA})=\overrightarrow{CA}•\overrightarrow{CB}$,邊AB,BC的中點(diǎn)分別為D,E.
(1)判斷△ABC的形狀;
(2)若$\overrightarrow{CD}•\overrightarrow{AE}$=0,求sin2B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=sin2x-2$\sqrt{3}$sin2x,求f(x)的最小正周期及在區(qū)間[0,$\frac{2π}{3}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.圓柱的底面半徑為1,高為1,則圓柱的表面積為( 。
A.πB.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案