2.求(x2+$\frac{1}{{x}^{2}}$-2)5的展開(kāi)式中的常數(shù)項(xiàng).

分析 在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng)

解答 解:(x2+$\frac{1}{{x}^{2}}$-2)5=$(x-\frac{1}{x})^{10}$,展開(kāi)式的通項(xiàng)公式為T(mén)r+1=${C}_{10}^{r}$•(-1)r•x10-2r,
令10-2r=0,求得r=5,可得展開(kāi)式中的常數(shù)項(xiàng)為-${C}_{10}^{5}$=-252.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.復(fù)數(shù)z=$\frac{1+i}{i}$(i虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,摩天輪的半徑OA為50m,它的最低點(diǎn)A距地面的高度忽略不計(jì).地面上有一長(zhǎng)度為240m的景觀帶MN,它與摩天輪在同一豎直平面內(nèi),且AM=60m.點(diǎn)P從最低點(diǎn)A處按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到最高點(diǎn)B處,記∠AOP=θ,θ∈(0,π).

(1)當(dāng)θ=$\frac{2π}{3}$ 時(shí),求點(diǎn)P距地面的高度PQ;
(2)試確定θ 的值,使得∠MPN取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知全集U={x|x2≥1},集合A={x|ln(x-1)≤0},則∁UA=(  )
A.{x|x≤-1或x>2}B.{x|x>2}C.{x|x≤-1或x=1或x>2}D.{x|x=1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)在圓x2+y2-x-y-6=0上,則雙曲線的虛軸長(zhǎng)為( 。
A.2$\sqrt{3}$B.2$\sqrt{5}$C.4$\sqrt{3}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知△ABC中,cosA=$\frac{3}{5}$,cosB=$\frac{4}{5}$,BC=4,則△ABC的面積為( 。
A.6B.12C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}的前n項(xiàng)和為 Sn,且 a1=1,S3=9.?dāng)?shù)列 {bn}中 b1=1,b3=20
(Ⅰ)若數(shù)列 $\left\{{\frac{b_n}{a_n}}\right\}$是公比q>0的等比數(shù)列,求 an,bn
(Ⅱ)在(I)的條件下,求數(shù)列 {bn}的前n項(xiàng)和 Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.經(jīng)過(guò)圓(x-2)2+y2=1的圓心且與直線2x-y+1=0平行的直線方程是(  )
A.2x-y-4=0B.2x-y+4=0C.x+2y-2=0D.x+2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.復(fù)數(shù)$z=\frac{1+2i}{1-i}$(i是虛數(shù)單位)的共軛復(fù)數(shù)$\overline z$表示的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案