A. | 6 | B. | 12 | C. | 5 | D. | 10 |
分析 由已知可求A,B為銳角,sinA,sinB的值,從而可求sinC=sin(A+B)=1,角C為直角,即可求得AC的值,由三角形面積公式即可求解.
解答 解:∵cosA=$\frac{3}{5}$<cosB=$\frac{4}{5}$,
∴A,B為銳角,則sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{4}{5}×\frac{4}{5}+\frac{3}{5}×\frac{3}{5}$=1,角C為直角,
∵BC=4,∴AB=$\frac{BC}{sinA}$=$\frac{4}{\frac{4}{5}}$=5,AC=ABsinB=5×$\frac{3}{5}$=3,
∴△ABC的面積=$\frac{1}{2}×AC×BC$=$\frac{1}{2}×3×4$=6.
故選:A.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)關(guān)系式的應(yīng)用,考查了三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式及三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 31 | C. | 32 | D. | 33 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π-2}{4π}$ | B. | $\frac{3π+2}{4π}$ | C. | $\frac{π+2}{4π}$ | D. | $\frac{3π-2}{4π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (1,3] | C. | [1,3) | D. | [-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6+4$\sqrt{5}$ | B. | 9+2$\sqrt{5}$ | C. | 12+2$\sqrt{5}$ | D. | 20+2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com