分析 (1)由函數(shù)的解析式,利用正弦函數(shù)的周期性,求得函數(shù)f(x)的最小正周期.
(2)利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)區(qū)間.
(3)利用正弦函數(shù)的定義域和值域,求得 f(x)=2sin(2x+$\frac{π}{3}$)的值域.
(4)由條件利用正弦函數(shù)的圖象的對稱性,求得f(x)的對稱軸方程,及對稱中心.
解答 解:(1)函數(shù)f(x)=2sin(2x+$\frac{π}{3}$)的最小正周期為 $\frac{2π}{2}$=π.
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,可得函數(shù)的減區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
(3)若x∈[0,$\frac{π}{2}$],則2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
∴f(x)=2sin(2x+$\frac{π}{3}$)的值域為[-$\sqrt{3}$,2].
(4)對于f(x)=2sin(2x+$\frac{π}{3}$),令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,可得它的對稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
令2x+$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{6}$,可得它的對稱軸方程為x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,可得它的圖象的對稱中心為($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z.
點評 本題主要考查正弦函數(shù)的周期性,單調(diào)性,定義域和值域,以及正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | -12 | C. | 12 | D. | -9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com