分析 由題意可得x2+y2=3,代入2≤x+$\frac{3x}{{x}^{2}+{y}^{2}}$≤4可得x的不等式,解不等式可得.
解答 解:∵w=x+$\frac{3x}{{x}^{2}+{y}^{2}}$+(y-$\frac{3y}{{x}^{2}+{y}^{2}}$)i,且2≤w≤4,
∴y-$\frac{3y}{{x}^{2}+{y}^{2}}$=0,且2≤x+$\frac{3x}{{x}^{2}+{y}^{2}}$≤4,
結(jié)合x,y∈R,y≠0可得x2+y2=3,
∴代入2≤x+$\frac{3x}{{x}^{2}+{y}^{2}}$≤4可得2≤2x≤4,
解得1≤x≤2,即1≤Rez≤2,
故答案為:[1,2]
點評 本題考查復數(shù)的代數(shù)形式的混合運算,涉及整體法和不等式的性質(zhì),屬基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,+∞) | B. | (2,+∞) | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2kπ),k∈Z | B. | (2kπ-π,2kπ),k∈Z | C. | (2kπ-2π,2kπ),k∈Z | D. | (2kπ-$\frac{4π}{3}$,2kπ),k∈Z |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0° | B. | 60° | C. | 90° | D. | 180° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com