分析 (1)通過(guò)a3=a2+2a1可知q2-q-2=0,解得q=2,通過(guò)${a}_{1}{q}^{3}$=24可知a1=3,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(guò)an•bn=Tn-Tn-1=3(n+1)•2n可知bn=2(n+1)(n≥2),進(jìn)而可得結(jié)論.
解答 解:(1)∵a3=a2+2a1,
∴a1q2=a1q+2a1,
∴q2-q-2=0,
解得:q=2或q=-1(舍),
又∵a4=24,即${a}_{1}{q}^{3}$=24,
∴a1=$\frac{24}{{2}^{3}}$=3,
∴an=3•2n-1;
(2)∵an•bn=Tn-Tn-1
=3n•2n+1-3(n-1)•2n
=3(n+1)•2n(n≥2),
∴bn=$\frac{3(n+1)•{2}^{n}}{{a}_{n}}$
=$\frac{3(n+1)•{2}^{n}}{3•{2}^{n-1}}$
=2(n+1)(n≥2),
又∵b1=$\frac{{T}_{1}}{{a}_{1}}$=$\frac{3•{2}^{2}}{3}$=4滿足上式,
∴bn=2(n+1).
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com