A. | 〔$\frac{3}{2}$,+∞)∪($-\frac{1}{2}$,O) | B. | (0,$\left.{\frac{3}{2}}]$∪(-∞,-$\frac{1}{2}$) | C. | $[{\frac{2}{3}}\right.$,+∞)∪(-2,0) | D. | $({0,\frac{2}{3}}]$∪(-∞,-2) |
分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)平面區(qū)域為三角形,即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域,則A(2,0),B(-2,0),
則y+2=k(x+1)表示過定點D(-1,-2)的直線,
不等式y(tǒng)+2≤k(x+1),表示在直線y+2=k(x+1)的下方,
AD的斜率k=$\frac{-2-0}{-1-2}=\frac{2}{3}$,BD的斜率k=$\frac{-2-0}{-1-(-2)}=-2$,
則實數(shù)k的取值范圍是k<-2或$0<k≤\frac{2}{3}$,
即$({0,\frac{2}{3}}]$∪(-∞,-2),
故選:D.
點評 本題主要考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | (1,3) | C. | (2,4) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0} | B. | {0,1} | C. | {x|0≤x≤1} | D. | {x|x<0或x>1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com