Processing math: 100%
16.已知函數(shù)f(x)=-x3+ax2-4.
(1)若f(x)在x=43處取得極值,求實(shí)數(shù)a的值;
(2)在(1)的條件下,若關(guān)于x的方程f(x)=m在[-1,1]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

分析 (1)求導(dǎo)數(shù),把x=43代入可得關(guān)于a的方程,解之可得a的值;(2)求f′(x),研究其變化規(guī)律可得函數(shù)的極值,數(shù)形結(jié)合可得答案.

解答 解:(1)由題意可得f′(x)=-3x2+2ax
由題意得f′(43)=0,解得a=2,經(jīng)檢驗(yàn)滿足條件.      
(2)由(1)知f(x)=-x3+2x2-4,則f′(x)=-3x2+4x,
令f′(x)=0,則x=0,或x=43(舍去),
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:

x-1(-1,0)0(0,1)1
f′(x)-0+
f(x)-1-4-3
∵關(guān)于x的方程f(x)=m在[-1,1]上恰有兩個(gè)不同的實(shí)數(shù)根,
∴-4<m≤-3.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,涉及根的存在性及個(gè)數(shù)的判斷,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)集合A={x|x>-1},B={x|-2<x<2},則集合A∩B等于{x|-1<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(t)=log2t,t∈[2,16],對(duì)于函數(shù)f(t)值域內(nèi)的任意實(shí)數(shù)m,則使x2+mx+4>4m+4x恒成立的實(shí)數(shù)x的取值范圍為( �。�
A.(-∞,-23]B.[2,+∞)C.(-∞,-23]∪[23,+∞)D.(-∞,-23)∪(23,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a4+a7=6,則S7=( �。�
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線C的左、右焦點(diǎn)為F1,F(xiàn)2,P為C的右支上動(dòng)點(diǎn)(非頂點(diǎn)),I為△F1PF2的內(nèi)心.當(dāng)P變化時(shí),I的軌跡為( �。�
A.雙曲線的一部分B.橢圓的一部分C.直線的一部分D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若|a|=1,|b|=2,(a-)•a=0,則ab的夾角為(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)f(x)在x=1處取得極值,不等式f(x)≥bx-2對(duì)?x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)x>y>e時(shí),證明不等式exlny>eylnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.方程6x=log2x的根所在區(qū)間是( �。�
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸交于點(diǎn)R,與拋物線交于點(diǎn)S,且|FS|=54|RS|
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)拋物線的焦點(diǎn)F,作垂直于y軸的直線l,P是拋物線上的一動(dòng)點(diǎn)(異于l與C的交點(diǎn)),過(guò)點(diǎn)P的切線交l于點(diǎn)A,交拋物線的準(zhǔn)線于點(diǎn)M,求證:|FA||FM|為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案