A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{8\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
分析 求出拋物線的焦點坐標F(1,0),用點斜式設出直線方程:y=$\sqrt{3}$(x-1),與拋物線方程聯(lián)解得一個關于x的一元二次方程,利用根與系數(shù)的關系結合曲線的弦長的公式,可以求出線段AB的長度.利用點到直線的距離求出三角形的高,即可求解面積.
解答 解:根據(jù)拋物線y2=4x方程得:焦點坐標F(1,0),
直線AB的斜率為k=tan60°=$\sqrt{3}$
由直線方程的點斜式方程,設AB:y=$\sqrt{3}$(x-1)
將直線方程代入到拋物線方程當中,得:3(x-1)2=4x
整理得:3x2-10x+3=0
設A(x1,y1),B(x2,y2)
由一元二次方程根與系數(shù)的關系得:x1+x2=$\frac{10}{3}$,x1•x2=1,所以弦長|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+3}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{16}{3}$.
O到直線的距離為:d=$\frac{\sqrt{3}}{\sqrt{3+1}}$=$\frac{\sqrt{3}}{2}$,
△AOB的面積為:$\frac{1}{2}×\frac{16}{3}×\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$.
故選:C.
點評 本題以拋物線為載體,考查了圓錐曲線的弦長問題,屬于難題.本題運用了直線方程與拋物線方程聯(lián)解的方法,對運算的要求較高.利用一元二次方程根與系數(shù)的關系和弦長公式是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ¬p:?x0∈(0,+∞),x02≥x0-1 | B. | ¬p:?x0∈(-∞,+0),x02≥x0-1 | ||
C. | ¬p:?x0∈(0,+∞),x02<x0-1 | D. | ¬p:?x0∈(-∞,+0),x02<x0-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | [0,1) | C. | (-∞,1) | D. | [0,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com