【題目】如圖(1),等腰梯形,,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2).
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)根據(jù)平幾知識(shí)得,,再根據(jù)線面垂直判定定理得面,最后根據(jù)面面垂直判定定理得結(jié)論;(Ⅱ)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)點(diǎn)坐標(biāo),利用方程組以及向量數(shù)量積求各平面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.
(Ⅰ),是的兩個(gè)三等分點(diǎn),
易知,是正方形,故
又,且
所以面
又面
所以面
(Ⅱ)過作于,過作的平行線交于,則面
又所在直線兩兩垂直,以它們?yōu)檩S建立空間直角坐標(biāo)系
則,,,
所以,,,
設(shè)平面的法向量為
則∴
設(shè)平面的法向量為
則∴
所以平面與平面所成銳二面角的余弦值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)與圖象的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)a=1時(shí),求的解集;
(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列,滿足下列條件:①,;②當(dāng)時(shí),滿足:時(shí),,;時(shí),,.
(1)若,,求和的值,并猜想數(shù)列可能的通項(xiàng)公式(不需證明);
(2)若,,是滿足的最大整數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下面幾種說法:
①相等向量的坐標(biāo)相同;
②若向量滿足,則
③若,,,是不共線的四點(diǎn),則“”是“四邊形為平行四邊形”的充要條件;
④的充要條件是且.
其中正確說法的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意實(shí)數(shù),給出下列命題:①“”是“”的充要條件;②“是無理數(shù)”是“是無理數(shù)”的充要條件;③“”是“”的充分條件;④“”是“”的必要條件;其中真命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為的正三角形利用平行于邊的直線剖分為個(gè)邊長為1的小正三角形.圖3為的情形.證明:存在正整數(shù),使得小三角形的頂點(diǎn)中可選出2000個(gè)點(diǎn),其中,任意三點(diǎn)均不構(gòu)成正三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com