【題目】若直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長(zhǎng)為6,則 的最小值為( )
A.10
B.
C.
D.
【答案】C
【解析】解:圓x2+y2+4x﹣4y﹣1=(x+2)2+(y﹣2)2=9是以(﹣2,2)為圓心,以3為半徑的圓,
又∵直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長(zhǎng)為6,
∴直線過圓心,
∴a+b=1,
∴ =( )(a+b)=5+ ≥5+2 =5+2 ,當(dāng)且僅當(dāng)a= ﹣2,b=3﹣ 時(shí)取等號(hào),
∴ 的最小值的最小值為5+2 ,
故選:C.
由已知中圓的方程x2+y2+4x﹣4y﹣1=0我們可以求出圓心坐標(biāo),及圓的半徑,結(jié)合直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長(zhǎng)為6,我們易得到a,b的關(guān)系式,再根據(jù)基本不等式中1的活用,即可得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)籽棉2噸、二級(jí)籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級(jí)籽棉1噸,二級(jí)籽棉2噸.每1噸甲種棉紗的利潤(rùn)為900元,每1噸乙種棉紗的利潤(rùn)為600元.工廠在生產(chǎn)這兩種棉紗的計(jì)劃中,要求消耗一級(jí)籽棉不超過250噸,二級(jí)籽棉不超過300噸.問甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤(rùn)總額最大?并求出利潤(rùn)總額的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線.
(1)若直線與曲線相切,求切點(diǎn)橫坐標(biāo)的值;
(2)若函數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC,BD交于G點(diǎn)
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C﹣BGF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為6,且橢圓與圓: 的公共弦長(zhǎng)為.
(1)求橢圓的方程.
(2)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn), ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且BC邊上的高為 ,則當(dāng) + 取得最大值時(shí),內(nèi)角A=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證:平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com