3.設(shè)函數(shù)f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),則下列關(guān)系中一定成立的是( 。
A.3c+3a=2B.3c+3a>2
C.3c+3a<2D.3c+3a與2的大小關(guān)系不確定

分析 運(yùn)用分段函數(shù)的形式寫出f(x)的解析式,作出f(x)=|3x-1|的圖象,由題意可得c<0,a>0,3c<1且3a>1,且f(c)-f(a)>0,去掉絕對(duì)值,化簡(jiǎn)即可得到結(jié)論.

解答 解:f(x)=|3x-1|=$\left\{\begin{array}{l}{{3}^{x}-1,x≥0}\\{1-{3}^{x},x<0}\end{array}\right.$,
作出f(x)=|3x-1|的圖象如圖所示,
由圖可知,要使c<b<a且f(c)>f(a)>f(b)成立,
則有c<0且a>0,
故必有3c<1且3a>1,
又f(c)-f(a)>0即為1-3c-(3a-1)>0,
所以3c+3a<2.
故選C.

點(diǎn)評(píng) 本題考點(diǎn)是指數(shù)函數(shù)單調(diào)性的應(yīng)用,考查用指數(shù)函數(shù)單調(diào)性確定參數(shù)的范圍,本題借助函數(shù)圖象來(lái)輔助研究,由圖象輔助研究函數(shù)性質(zhì)是函數(shù)圖象的重要作用,以形助數(shù)的解題技巧必須掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.2015年春,某地干旱少雨,農(nóng)作物受災(zāi)嚴(yán)重,為了使今后保證農(nóng)田灌溉,當(dāng)?shù)卣疀Q定建一橫斷面為等腰梯形的水渠(水渠的橫斷面如圖所示),為減少水的流失量,必須減少水與渠壁的接觸面,若水渠橫斷面的面積設(shè)計(jì)為定值S,渠深為h,則水渠壁的傾斜角α(0<α<$\frac{π}{2}$)為多大時(shí),水渠中水的流失量最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.哈爾濱市投資修建冰雪大世界,為了調(diào)查此次修建冰雪大世界能否收回成本,組委會(huì)成立了一個(gè)調(diào)查小組對(duì)國(guó)內(nèi)參觀冰雪大世界的游客的消費(fèi)指數(shù)(單位:百元)進(jìn)行調(diào)查,在調(diào)查的1000位游客中有100位哈爾濱本地游客,把哈爾濱本地游客記為A組,內(nèi)外地游客記為B組,按分層抽樣從這1000人中抽取A,B組人數(shù)如下表:
A組:
消費(fèi)指數(shù)(百元)[1,2)[2,3)[3,4)[4,5)[5,6)
人數(shù)34652
B組:
消費(fèi)指數(shù)(百元)[3,4)[4,5)[5,6)[6,7)[7,8]
人數(shù)936a549
(1)確定a的值,再分別在答題紙上完成A組與B組的頻率分布直方圖;
(2)分別估計(jì)A,B兩組游客消費(fèi)指數(shù)的平均數(shù),并估計(jì)被調(diào)查的1000名游客消費(fèi)指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.函數(shù)f(x)=-x2+2ax+1,x∈[0,4],
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最值;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x≥0}\\{2x+3,x<0}\end{array}\right.$,則f(-1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=6,BC=4,AA1=2,P,Q分別為棱AA1,C1D1的中點(diǎn),則從點(diǎn)P出發(fā),沿長(zhǎng)方體表面到達(dá)點(diǎn)Q的最短路徑的長(zhǎng)度為(  )
A.3$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{34}$D.5$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)a,b滿足2a2-5lna-b=0,c∈R,則$\sqrt{(a-c)^{2}+(b+c)^{2}}$的最小值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)F1、F2是雙曲線x2-$\frac{{y}^{2}}{4}$=1的左、右兩個(gè)焦點(diǎn),在雙曲線右支上取一點(diǎn)P,使|OP|=|PF2|(O為坐標(biāo)原點(diǎn))且|PF1|=λ|PF2|,則實(shí)數(shù)λ的值為( 。
A.$\frac{7}{3}$B.2或$\frac{1}{2}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.利用單位圓,求使下列不等式成立的x的范圍
(1)cosx≥$\frac{\sqrt{2}}{2}$
(2)tanx≤1 
(3)sinx≤-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案