等差數(shù)列{an}中,若a2+a4+a9+a11=32,則a6+a7=( 。
A、9B、12C、15D、16
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列通項性質(zhì)可得:a2+a11=a4+a9=a6+a7.即可得出.
解答: 解:∵{an} 是等差數(shù)列,∴a2+a11=a4+a9=a6+a7
∵a2+a4+a9+a11=32,∴a6+a7=16.
故選D.
點評:本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax-by-1=0是曲線y=x3在點p(2,8)處的切線,則a為( 。
A、
4
3
B、-
4
3
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(8,
1
2
x),
b
=(x,1),其中x>1,若(2
a
+
b
)∥
b
,則x的值為( 。
A、0B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={y|y=x 
1
2
,x∈[1,4]},N={x|y=log2(1-x)},則(∁RN)∩M=( 。
A、{x|1≤x≤2}
B、{x|1≤x≤4}
C、{x|
2
≤x≤2}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有 m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的命題是( 。
A、若 m?α,n?α,m∥β,n∥β,則 α∥β
B、若 m?α,n?β,α∥β,則 m∥n
C、若 m⊥α,m⊥n,則 n∥α
D、若 m∥n,n⊥α,則 m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的奇函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,當(dāng)x∈(1,+∞)時,f′(x)<0;當(dāng)x∈(0,1)時,f′(x)>0,且f(2)=0,則關(guān)于x的不等式(x+1)f(x)>0的解集為( 。
A、(-2,-1)∪(0,2)
B、(-∞,-2)∪(0.2)
C、(-2,0)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間直角坐標(biāo)系中,△ABC的三視圖如圖所示,已知A(0,0,0),B(0,2,2),則點C的坐標(biāo)是( 。
A、(0,-2,2)
B、(-2,-2,2)
C、(2,0,0)
D、(2,-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡復(fù)數(shù)z=
1
1-i
為( 。
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、1-i
D、1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C的方程為ρ=2acosθ,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=3t+2
y=4t+2
(t為參數(shù)).
(Ⅰ)若直線l與圓C相切,求實數(shù)a的值;
(Ⅱ)若直線l過點(a,a),求直線l被圓C截得的弦長.

查看答案和解析>>

同步練習(xí)冊答案