3.已知函數(shù)f(x)是R上的偶函數(shù),且滿足f(x+3)=-f(x),當x∈(0,2)時f(x)=2x3,則f(14)=-2.

分析 借助于函數(shù)為偶函數(shù),借助于條件f(x+3)=-f(x),得到該函數(shù)為周期函數(shù),且周期為6,然后,利用給定范圍內(nèi)函數(shù)的解析式進行求解.

解答 解:∵f(x+3)=-f(x),
∴f(x+6)=-f(x+3)=-(-f(x))=f(x),
∴函數(shù)f(x)的周期為6,
當x∈(0,2)時f(x)=2x3,f(14)=f(2)=-f(-1)=-f(1)=-2.
故答案為:-2.

點評 本題綜合考查了函數(shù)的奇偶性和周期性等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=ax2-x是R上的減函數(shù),則( 。
A.a=0B.a<1C.a<0D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$C:\frac{x^2}{3}+{y^2}=1$的弦AB過點(-1,0),則弦AB中點的軌跡方程是x2+x+3y2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題:
①函數(shù)f(x)=loga(2x-1)-1的圖象過定點(1,-1);
②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③A=R,B=R,$f:x→y=\frac{1}{x+1}$,則f為A到B的映射;
④在同一坐標系中,y=2x與y=2-x的圖象關(guān)于y軸對稱.
其中真命題的序號是①②④(把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)$f(x)=\sqrt{x+3}+\frac{1}{x+1}$的定義域是{x|x≥-3且x≠-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=$\left\{{\begin{array}{l}{x+\frac{2}{x}-3,(0<x≤1)}\\{lg({x^2}+1),(x>1)}\end{array}}$,則f(f(3))=0,f(x)的最小值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面上三點A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)若三點A,B,C不能構(gòu)成三角形,則實數(shù)k的值是$\frac{1}{2}$,
(2)若△ABC為直角三角形,且∠B=90°,則k的值是3或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義域為R的函數(shù)f(x)不是偶函數(shù),則下列命題一定為真命題的是( 。
A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C.?x0∈R,f(-x0)≠f(x0D.?x0∈R,f(-x0)≠-f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{{2}^{x}-2}$的定義域為[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案