8.已知f(x)=$\left\{{\begin{array}{l}{x+\frac{2}{x}-3,(0<x≤1)}\\{lg({x^2}+1),(x>1)}\end{array}}$,則f(f(3))=0,f(x)的最小值是0.

分析 由分段函數(shù)的解析式,結(jié)合對數(shù)的運(yùn)算,可得f(f(3));分別討論0<x≤1,x>1的函數(shù)的單調(diào)性,即可得到最小值.

解答 解:f(x)=$\left\{{\begin{array}{l}{x+\frac{2}{x}-3,(0<x≤1)}\\{lg({x^2}+1),(x>1)}\end{array}}$,
可得f(3)=lg(32+1)=lg10=1,
f(f(3))=f(1)=1+2-3=0;
當(dāng)0<x≤1時(shí),f(x)=x+$\frac{2}{x}$-3的導(dǎo)數(shù)為f′(x)=1-$\frac{2}{{x}^{2}}$<0,
即有f(x)遞減,則f(1)最小,且為0;
當(dāng)x>1時(shí),f(x)=lg(1+x2)遞增,即有f(x)>f(1)=lg2>0.
則有f(x)的最小值為0.
故答案為:0,0.

點(diǎn)評 本題考查分段函數(shù)的運(yùn)用,考查函數(shù)的單調(diào)性的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.寫出原命題“已知集合A,B,若A∪B≠B,則A不是B的子集”的逆命題、否命題、逆否命題,分別判斷四種命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:?x∈[0,π],使$sin(x+\frac{π}{3})<a$成立,則實(shí)數(shù)a的取值范圍為$a>-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C的標(biāo)準(zhǔn)方程為(x-5)2+(y-6)2=a2
(1)若點(diǎn)M(6,9)在圓上,求a的值;
(2)已知點(diǎn)P(3,3)和點(diǎn)Q(5,3)有一點(diǎn)在圓內(nèi),另一點(diǎn)在圓外,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)是R上的偶函數(shù),且滿足f(x+3)=-f(x),當(dāng)x∈(0,2)時(shí)f(x)=2x3,則f(14)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)ft(x)=(x-t)2-t(t∈R),設(shè)a<b,f(x)=$\left\{\begin{array}{l}{f_a}(x),{f_a}(x)<{f_b}(x)\\{f_b}(x),{f_a}(x)≥{f_b}(x)\end{array}$,若函數(shù)y=f(x)+x+a-b有三個(gè)零點(diǎn),則b-a的值為2+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=$\frac{{\sqrt{1-x}}}{{{x^2}-4}}$,其定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.(-∞,2]C.(-∞,-2)∪(-2,1]D.[1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={1,2,3,4},B={x|x=2n,n∈A},則A∩B=( 。
A.{1,4}B.{1,3}C.{2,4}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x為實(shí)數(shù),用[x]表示不超過x的最大整數(shù),例如[1.2]=1,[-1.2]=2,[1]=1.對于函數(shù)f(x),若存在m∈R且m≠Z,使得f(m)=f([m]),則稱函數(shù)f(x)是Ω函數(shù).
(Ⅰ)判斷函數(shù)f(x)=x2-$\frac{1}{3}$x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)已知f(x)=x+$\frac{a}{x}$,請寫出a的一個(gè)值,使得f(x)為Ω函數(shù),并給出證明;
(Ⅲ)設(shè)函數(shù)f(x)是定義在R上的周期函數(shù),其最小周期為T.若f(x)不是Ω函數(shù),求T的最小值.

查看答案和解析>>

同步練習(xí)冊答案