分析 由分段函數(shù)的解析式,結(jié)合對數(shù)的運(yùn)算,可得f(f(3));分別討論0<x≤1,x>1的函數(shù)的單調(diào)性,即可得到最小值.
解答 解:f(x)=$\left\{{\begin{array}{l}{x+\frac{2}{x}-3,(0<x≤1)}\\{lg({x^2}+1),(x>1)}\end{array}}$,
可得f(3)=lg(32+1)=lg10=1,
f(f(3))=f(1)=1+2-3=0;
當(dāng)0<x≤1時(shí),f(x)=x+$\frac{2}{x}$-3的導(dǎo)數(shù)為f′(x)=1-$\frac{2}{{x}^{2}}$<0,
即有f(x)遞減,則f(1)最小,且為0;
當(dāng)x>1時(shí),f(x)=lg(1+x2)遞增,即有f(x)>f(1)=lg2>0.
則有f(x)的最小值為0.
故答案為:0,0.
點(diǎn)評 本題考查分段函數(shù)的運(yùn)用,考查函數(shù)的單調(diào)性的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,4} | B. | {1,3} | C. | {2,4} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com