19.“M不是N的子集”的充分必要條件是(  )
A.若x∈M,則x∉N
B.若x∈N,則x∈M
C.存在x1∈M且x1∈N,又存在x2∈M且x2∉N
D.存在x0∈M但x0∉N

分析 利用充分必要條件的意義、子集的定義即可判斷出結(jié)論.

解答 解:“M不是N的子集”的充分必要條件是:存在x0∈M但x0∉N,
故選:D.

點(diǎn)評(píng) 本題考查了充分必要條件的意義、子集的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=ex-a(x+1)(e是自然對(duì)數(shù)的底數(shù),e=2.71828…).
(1)若f'(0)=0,求實(shí)數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的a≤-1,恒有g(shù)(x2)-g(x1)>m(x2-x1)成立,求實(shí)數(shù)m的取值范圍;
(3)求證:1n+3n+…+(2n-1)n<$\frac{{\sqrt{e}}}{e-1}{(2n)^n}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.i為虛數(shù)單位,復(fù)數(shù)z滿足z(1+i)=i,則|z|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知{an}為等差數(shù)列,若a1+a5+a9=5π,則cos(a2+a8)為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知$\frac{sinα-cosα}{sinα+cosα}=1+\sqrt{2}$,則tanα=-$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$的一個(gè)焦點(diǎn),則p等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知圓${C_1}:{(x-1)^2}+{y^2}=25$,圓${C_2}:{(x+1)^2}+{y^2}=1$,動(dòng)圓C3與圓C1內(nèi)切并與圓C2外切. (1)設(shè)動(dòng)圓C3的圓心軌跡為曲線C,求C的方程;
(2)若過點(diǎn)A(0,-3)的直線l與C交于兩點(diǎn)D,E,求△ODE的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.將曲線C:(x-2)2+y2=4圖象上每一點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$,再向左平移1個(gè)單位,得到曲線C1的圖象,若曲線C1上存在點(diǎn)P,使得點(diǎn)P到點(diǎn)$F(0,\sqrt{3})$的距離與點(diǎn)P到直線$l:y=\sqrt{2}x+2\sqrt{3}$的距離相等,則點(diǎn)P的坐標(biāo)為($\frac{\sqrt{3}}{3}$,-$\frac{2\sqrt{6}}{3}$)或(-$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{6}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.①求下列函數(shù)的定積分:(1)${∫}_{0}^{2}$(3x2+4x3)dx;(2)${∫}_{0}^{1}$(ex+2x)dx
②求下列函數(shù)的導(dǎo)數(shù):(1)y=$\frac{{x}^{2}+sin2x}{{e}^{x}}$   (2)y=ln$\frac{2x+1}{2x-1}$($x>\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案