15.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,則$\frac{c}$=1.

分析 利用正弦定理求出C的大小,然后求出B,然后判斷三角形的形狀,求解比值即可.

解答 解:在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,
由正弦定理可得:$\frac{a}{sinA}=\frac{c}{sinC}$,
$\frac{\sqrt{3}c}{sin\frac{2π}{3}}$=$\frac{c}{sinC}$,sinC=$\frac{1}{2}$,C=$\frac{π}{6}$,則B=$π-\frac{2π}{3}-\frac{π}{6}$=$\frac{π}{6}$.
三角形是等腰三角形,B=C,則b=c,
則$\frac{c}$=1.
故答案為:1.

點評 本題考查正弦定理的應(yīng)用,三角形的判斷,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若z=4+3i,則$\frac{\overline{z}}{|z|}$=( 。
A.1B.-1C.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在($\root{3}{x}$-$\frac{2}{x}$)n的二項式中,所有的二項式系數(shù)之和為256,則常數(shù)項等于112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=cos(x+$\frac{π}{6}$)+sinx.
(1)利用“五點法”列表,并畫出f(x)在[-$\frac{π}{3}$,$\frac{5π}{3}$]上的圖象;
(2)a,b,c分別是銳角△ABC中角A,B,C的對邊.若a=$\sqrt{3}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式組$\left\{\begin{array}{l}{x+2y≥1}\\{x-3y≤1}\\{{x}^{2}+{y}^{2}-2x≤3}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,拋物線E:x2=2y的焦點F是C的一個頂點.
(I)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動點,且位于第一象限,E在點P處的切線l與C交于不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線l與y軸交于點G,記△PFG的面積為S1,△PDM的面積為S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值及取得最大值時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是各項均為正數(shù)的等差數(shù)列,公差為d,對任意的n∈N+,bn是an和an+1的等比中項.
(1)設(shè)cn=bn+12-bn2,n∈N+,求證:數(shù)列{cn}是等差數(shù)列;
(2)設(shè)a1=d,Tn=$\sum_{k=1}^{2n}$(-1)kbk2,n∈N*,求證:$\sum_{i=1}^{n}\frac{1}{{T}_{k}}$<$\frac{1}{2yme7bnu^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(1-x2)(1+x)16的展開式中,x12的系數(shù)是-6188.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(6,-4),若$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow$),則實數(shù)t的值為-5.

查看答案和解析>>

同步練習(xí)冊答案