2.若z=4+3i,則$\frac{\overline{z}}{|z|}$=( 。
A.1B.-1C.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

分析 利用復(fù)數(shù)的除法以及復(fù)數(shù)的;喦蠼饧纯桑

解答 解:z=4+3i,則$\frac{\overline{z}}{|z|}$=$\frac{4-3i}{|4+3i|}$=$\frac{4-3i}{5}$=$\frac{4}{5}$-$\frac{3}{5}$i.
故選:D.

點(diǎn)評 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(ax2+$\frac{1}{\sqrt{x}}$)5的展開式中x5的系數(shù)是-80,則實(shí)數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費(fèi),超出x的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計x的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點(diǎn)x0,且f(x1)=f(x0),其中x1≠x0,求證:x1+2x0=3;
(3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[0,2]上的最大值不小于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.根據(jù)下列公式,求出下面數(shù)列{an}的前5項(xiàng).
(1)an=$\frac{n}{n+1}$
(2)a1=1,an+1=an+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線l:x-$\sqrt{3}$y+6=0與圓x2+y2=12交于A,B兩點(diǎn),過A,B分別作l的垂線與x軸交于C,D兩點(diǎn).則|CD|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在等比數(shù)列{an}中,a2•a4•a6=27,則log3(a1•a3•a5•a7)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸,過點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過OE的中點(diǎn),則C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,則$\frac{c}$=1.

查看答案和解析>>

同步練習(xí)冊答案