分析 根據(jù)積分的知識可得先求y=-x2+2x與x軸圍成的封閉區(qū)域為M的面積,再求出S陰影,最后代入幾何概率的計算公式可求.
解答 解:令y=-x2+2x=0,解得x=0或x=2,
∴由拋物線y=-x2+2x與x軸圍成的封閉區(qū)域SM=${∫}_{0}^{2}$(-x2+2x)dx=(-$\frac{1}{3}$x3+x2)|${\;}_{0}^{2}$=-$\frac{8}{3}$+4=$\frac{4}{3}$,
由$\left\{\begin{array}{l}{y=-{x}^{2}+2x}\\{y=x}\end{array}\right.$,解得x=0或x=1,
∴由拋物線y=-x2+2x與y=x圍成的封閉區(qū)域
S陰影=${∫}_{0}^{1}$((-x2+2x-x)dx=${∫}_{0}^{1}$((-x2+x)dx=(-$\frac{1}{3}$x3+$\frac{1}{2}$x2)|${\;}_{0}^{1}$=-$\frac{1}{3}$+$\frac{1}{2}$=$\frac{1}{6}$,
故則P(y>x)=$\frac{{S}_{陰影}}{{S}_{M}}$=$\frac{\frac{1}{6}}{\frac{4}{3}}$=$\frac{1}{8}$,
故答案為:$\frac{1}{8}$
點評 本題主要考查了利用積分求解曲面的面積,還考查了幾何概率的計算公式的應用,屬于基礎試題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | $-\sqrt{3}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$+1 | B. | $\sqrt{2}$-1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com