分析 由二次函數(shù)y=f(x)的圖象過原點(diǎn),設(shè)出二次函數(shù)解析式為f(x)=ax2+bx(a≠0),把f(-1)和f(1)用含有a,b的代數(shù)式表示,聯(lián)立關(guān)于a,b的方程組解出a,b,然后把f(-2)也用含有a,b的代數(shù)式表示,最后轉(zhuǎn)化為用f(-1)和f(1)表示,由f(-1)和f(1)的范圍求得f(-2)的范圍.
解答 解:∵二次函數(shù)y=f(x)的圖象過原點(diǎn),
∴設(shè)f(x)=ax2+bx(a≠0),
又$\left\{\begin{array}{l}f(-1)=a-b\\ f(1)=a+b\end{array}\right.$,
得$\left\{\begin{array}{l}a=\frac{1}{2}[f(-1)+f(1)]\\ b=\frac{1}{2}[f(1)-f(-1)]]\end{array}\right.$,
∴f(-2)=4a-2b=4×$\frac{1}{2}$[f(-1)+f(1)]-2×$\frac{1}{2}$[f(1)-f(-1)]=3f(-1)+f(1),
又∵-1≤f(-1)≤2,2≤f(1)≤4,
∴-1≤3f(-1)+f(1)≤10,
即-1≤f(-2)≤10.
∴f(-2)的取值范圍是[-1,10].
點(diǎn)評(píng) 本題考查了函數(shù)值的求法,訓(xùn)練了利用不等式求函數(shù)的值的范圍,解答此題的關(guān)鍵是把f(-2)轉(zhuǎn)化為含有
f(-1)和f(1)的表達(dá)式,此題是易錯(cuò)題,學(xué)生往往會(huì)直接由f(-1)和f(1)的范圍聯(lián)立求出a和b的范圍,然后把f(-2)用a和b的代數(shù)式表示,由a和b的范圍求解f(-2)的范圍,忽略了其中a和b是相關(guān)聯(lián)的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6+2sin2 | B. | -6-2cos2 | C. | 20 | D. | -20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
X | 0 | 1 | 2 | 3 |
P | $\frac{2}{25}$ | a | b | $\frac{4}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com