分析 (1)由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)由條件,利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)遞減區(qū)間.
解答 解:(1)由函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象知A=2.
f(x)的最小正周期T=4×($\frac{5π}{12}$-$\frac{π}{6}$)=π,故ω=$\frac{2π}{T}$=2.
再根據(jù)五點法作圖可得 $\frac{π}{3}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
故函數(shù)f(x)的解析式為f(x)=2sin(2x+$\frac{π}{6}$).
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ,k∈z$,解得 kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
所以,函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{25}{8}$ | D. | $\frac{25}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6π | B. | 9π | C. | 3π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5+6$\sqrt{2}$,$\frac{2}{13}$ | B. | 5+6$\sqrt{2}$,$\frac{1}{5}$ | C. | 20,$\frac{1}{5}$ | D. | 20,$\frac{2}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 16 | C. | 8 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com