定義在R上的奇函數(shù)y=f(x) 滿足f(3)=0,且不等式f(x)>-xf′(x)在(0,+∞)上恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點(diǎn)個(gè)數(shù)為
 
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件構(gòu)造函數(shù),利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系.結(jié)合數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:∵不等式f(x)>-xf′(x)在(0,+∞)上恒成立,
∴不等式f(x)+xf′(x)>0在(0,+∞)上恒成立,
即[xf(x)]′=f(x)+xf′(x)>0,
即xf(x)在(0,+∞)遞增,
∵在R上的奇函數(shù)y=f(x) 滿足f(3)=0,
∴xf(x)為偶函數(shù)且有一個(gè)零點(diǎn)為3,
令g(x)=0得xf(x)=-lg|x+1|,
如圖可知g(x)有3個(gè)零點(diǎn),
故答案為:3
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,根據(jù)條件構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.注意要數(shù)形結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由點(diǎn)P(1,1)發(fā)出光線射到直線x+y=-1上,反射后過點(diǎn)Q(2,3),則反射光線所在直線的一般方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=22x+1-m•2x+m.(m∈R)
(1)若函數(shù)f(x)在區(qū)間[0,2]有兩個(gè)零點(diǎn),求m的范圍;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a<0<b,那么下列不等式中正確的是( 。
A、-
a
b
B、a2<b2
C、a3<b3
D、ab>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在直線x-y-4=0上,并且經(jīng)過圓x2+y2+6x-4=0與圓x2+y2+6y-28=0交點(diǎn)的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算(-2)101+(-2)100;
(2)已知lg(x+y)+lg(2x+3y)-lg3=lg4+lgx+lgy.求x:y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-3)x+3a,x<1
logax,x≥1
是(-∞,+∞)上的減函數(shù),那么a的取值范圍是( 。
A、[
3
4
,1)
B、(1,3)
C、(0,1)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-2x+3,x∈[0,3]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log2
1
3
,b=(
1
2
)-0.3,c=log3
2,則a,b,c的大小關(guān)系為(  )
A、a<c<b
B、a<b<c
C、b<c<a
D、b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案