分析 (Ⅰ)由橢圓的離心率為$\frac{{\sqrt{3}}}{2}$,且焦距為4$\sqrt{3}$,列出方程組求出a,b,由此能求出橢圓C的方程.
(Ⅱ)聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(4k2+1)x2+8kmx+4m2-16=0,利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式,結(jié)合已知條件能求出m的取值范圍.
解答 解:(Ⅰ)∵橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,且焦距為4$\sqrt{3}$,
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2c=4\sqrt{3}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=4,b=2,
∴橢圓C的方程$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(4k2+1)x2+8kmx+4m2-16=0,
由△=(8km)2-4(4k2+1)(4m2-16)>0,得m2<4+16k2,
${x}_{1}+{x}_{2}=-\frac{8km}{4{k}^{2}+1}$,${x}_{1}{x}_{2}=\frac{4{m}^{2}-16}{4{k}^{2}+1}$,
|AB|=$\sqrt{1+{k}^{2}}•\sqrt{(-\frac{8km}{4{k}^{2}+1})^{2}-\frac{4(4{m}^{2}-16)}{4{k}^{2}+1}}$=4$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16{k}^{2}+4-{m}^{2}}}{4{k}^{2}+1}$,
∴△AOB的面積S△AOB=$\frac{1}{2}$|AB|•$\frac{|m|\sqrt{16{k}^{2}+4-{m}^{2}}}{4{k}^{2}+1}$=2$\sqrt{(4-\frac{{m}^{2}}{4{k}^{2}+1})•\frac{{m}^{2}}{4{k}^{2}+1}}$,
∴2$\sqrt{(4-\frac{{m}^{2}}{4{k}^{2}+1})•\frac{{m}^{2}}{4{k}^{2}+1}}$=4,∴m2=2(4k2+1),
由k2≥0,m2≥2,得$m≥\sqrt{2}$或m$≤-\sqrt{2}$,
∴m的取值范圍為(-∞,-$\sqrt{2}$]∪[$\sqrt{2},+∞$).
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、弦長(zhǎng)公式、橢圓性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,-$\frac{3\root{3}{2}}{2}$) | C. | (0,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 12 | C. | 6 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com