【題目】函數(shù)R上的奇函數(shù),m、n是常數(shù).

1)求mn的值;

2)判斷的單調(diào)性并證明;

3)不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.

【答案】1;(2)在R上遞增,證明見(jiàn)解析;(3

【解析】

1)依題意時(shí)上的奇函數(shù),則采用特殊值法,即可求出參數(shù)的值;

2)利用定義法證明函數(shù)的單調(diào)性,按照:設(shè)元、作差、變形、判斷符號(hào)、下結(jié)論的步驟完成即可;

3)根據(jù)函數(shù)的奇偶性和單調(diào)性將函數(shù)不等式轉(zhuǎn)化為自變量的不等式,即對(duì)任意恒成立,令,即,對(duì)恒成立,令,根據(jù)二次函數(shù)的性質(zhì)分析可得;

解:(1)∵上的奇函數(shù),

.

2上遞增

證明:設(shè),且,則

,,∴,即,∴上的增函數(shù).

3)由題意得:對(duì)任意恒成立又R上的增函數(shù),

對(duì)任意恒成立,

,即,對(duì)恒成立,令,對(duì)稱(chēng)軸為,當(dāng)時(shí),為增函數(shù),

成立,∴符合,

當(dāng)時(shí),為減,為增,

解得,∴.

綜上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的右焦點(diǎn),過(guò)原點(diǎn)的直線(xiàn)交于,兩點(diǎn),則的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.

1)當(dāng)時(shí),求的值域

2)令,若對(duì)任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若不等式時(shí)恒成立,求實(shí)數(shù)a的取值范圍;

3)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了激勵(lì)業(yè)務(wù)員的積極性,對(duì)業(yè)績(jī)?cè)?/span>60萬(wàn)到200萬(wàn)的業(yè)務(wù)員進(jìn)行獎(jiǎng)勵(lì)獎(jiǎng)勵(lì)方案遵循以下原則:獎(jiǎng)金y(單位:萬(wàn)元)隨著業(yè)績(jī)值x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1.5萬(wàn)元同時(shí)獎(jiǎng)金不超過(guò)業(yè)績(jī)值的5%.

1)若某業(yè)務(wù)員的業(yè)績(jī)?yōu)?/span>100萬(wàn)核定可得4萬(wàn)元獎(jiǎng)金,若該公司用函數(shù)k為常數(shù))作為獎(jiǎng)勵(lì)函數(shù)模型,則業(yè)績(jī)200萬(wàn)元的業(yè)務(wù)員可以得到多少獎(jiǎng)勵(lì)?(已知

2)若采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐,,,.

(1)求證:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三(1)班在一次語(yǔ)文測(cè)試結(jié)束后,發(fā)現(xiàn)同學(xué)們?cè)诒痴b內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早晩讀時(shí)間站起來(lái)大聲誦讀,為了解同學(xué)們對(duì)站起來(lái)大聲誦讀的態(tài)度,對(duì)全班50名同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后制成如表:

考試分?jǐn)?shù)

,

,

,

,

,

,

頻數(shù)

5

10

15

5

10

5

贊成人數(shù)

4

6

9

3

6

4

1)欲使測(cè)試優(yōu)秀率為,則優(yōu)秀分?jǐn)?shù)線(xiàn)應(yīng)定為多少分?

2)依據(jù)第1問(wèn)的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來(lái)大聲誦讀的態(tài)度與考試成績(jī)是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有的把握認(rèn)為贊成與否的態(tài)度與成績(jī)是否優(yōu)秀有關(guān)系.

參考公式及數(shù)據(jù):,.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次數(shù)學(xué)考試后,對(duì)高三文理科學(xué)生進(jìn)行抽樣調(diào)查,調(diào)查其對(duì)本次考試的結(jié)果滿(mǎn)意或不滿(mǎn)意,現(xiàn)隨機(jī)抽取名學(xué)生的數(shù)據(jù)如下表所示:

滿(mǎn)意

不滿(mǎn)意

總計(jì)

文科

22

18

40

理科

48

12

60

總計(jì)

70

30

100

1)根據(jù)數(shù)據(jù),有多大的把握認(rèn)為對(duì)考試的結(jié)果滿(mǎn)意與科別有關(guān);

2)用分層抽樣方法在感覺(jué)不滿(mǎn)意的學(xué)生中隨機(jī)抽取名,理科生應(yīng)抽取幾人;

3)在(2)抽取的名學(xué)生中任取2名,求文科生人數(shù)的期望.其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案