【題目】如圖,在四棱錐中,,,,,.
(1)求證:平面;
(2)若,求二面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)因?yàn)?/span>所以要證平面,即證平面,轉(zhuǎn)證(2)以點(diǎn)為坐標(biāo)原點(diǎn),,,分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標(biāo)系.分別求出平面與平面的法向量,代入公式,即可得到二面角的余弦值.
(1)證明:取的中點(diǎn),連接,所以.
因?yàn)?/span>,所以四邊形為平行四邊形,
所以,且.又,,
所以,
所以,所以.
又因?yàn)?/span>,,所以平面.
又因?yàn)?/span>,所以平面.
(2)由(1)知平面,過點(diǎn)作交于點(diǎn),
故以點(diǎn)為坐標(biāo)原點(diǎn),,,分別為軸,軸,軸的正方向,
建立如圖所示的空間直角坐標(biāo)系.
則,,,,
所以,,.,
設(shè)平面的法向量為,
由,得,
取,得平面的一個(gè)法向量為.
設(shè)平面的法向量為,
由,得,
取,得平面的一個(gè)法向量為,
所以.
因?yàn)槎娼?/span>是一個(gè)銳二面角,所以余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)是軸與圓的一個(gè)公共點(diǎn)(異于原點(diǎn)),拋物線的準(zhǔn)線為,上橫坐標(biāo)為的點(diǎn)到的距離等于.
(1)求的方程;
(2)直線與圓相切且與相交于,兩點(diǎn),若的面積為4,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )
A. 若是的極小值點(diǎn),則在區(qū)間上單調(diào)遞減
B. ,使
C. 函數(shù)的圖像可以是中心對(duì)稱圖形
D. 若是的極值點(diǎn),則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是R上的奇函數(shù),m、n是常數(shù).
(1)求m,n的值;
(2)判斷的單調(diào)性并證明;
(3)不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓外的有一點(diǎn),過點(diǎn)作直線.
(1)當(dāng)直線過圓心時(shí),求直線的方程;
(2)當(dāng)直線與圓相切時(shí),求直線的方程;
(3)當(dāng)直線的傾斜角為時(shí),求直線被圓所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,,,為的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)若線段上的點(diǎn)滿足,求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國古代數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注解時(shí)給出的“弦圖”.現(xiàn)提供4種顏色給“弦圖”的5個(gè)區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有( )
A.48種B.72種C.96種D.144種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com