8.已知定義域?yàn)镽的函數(shù)f(x)在(2,+∞)上單調(diào)遞減,且y=f(x+2)為偶函數(shù),則關(guān)于x的不等式f(2x-1)-f(x+1)>0的解集為( 。
A.(-∞,-$\frac{4}{3}$)∪(2,+∞)B.(-$\frac{4}{3}$,2)C.(-∞,$\frac{4}{3}$)∪(2,+∞)D.($\frac{4}{3}$,2)

分析 根據(jù)函數(shù)的單調(diào)性和奇偶性的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化進(jìn)行求解即可.

解答 解:∵定義域?yàn)镽的函數(shù)f(x)在(2,+∞)上單調(diào)遞減,且y=f(x+2)為偶函數(shù),
∴y=f(x+2)關(guān)于x=0對稱,即函數(shù)f(x+2)在(0,+∞)上為減函數(shù),
由f(2x-1)-f(x+1)>0得f(2x-1)>f(x+1),
即f(2x-3+2)>f(x-1+2),
即|2x-3|<|x-1|,
平方整理得3x2-10x+8<0,
即$\frac{4}{3}$<x<2,
即不等式的解集為($\frac{4}{3}$,2),
故選:D

點(diǎn)評 本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若實(shí)數(shù)x,y滿足x2+2y2+xy=1,求x+2y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.猜想$\sqrt{\underset{\underbrace{11…1}}{2n個(gè)}-\underset{\underbrace{22…2}}{n個(gè)}}$(n∈N*)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\overrightarrow{OA}$=(2,3),$\overrightarrow{OB}=(-3,y)$,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則y等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.方程9x+|3x+b|=5(b∈R)有兩個(gè)負(fù)實(shí)數(shù)解,則b的取值范囤為(  )
A.(3,5)B.(-5.25,-5)C.[-5.25,-5)D.前三個(gè)都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.當(dāng)x∈($\frac{3π}{2}$,2π)時(shí),下列結(jié)論正確的是( 。
A.y=sinx為增函數(shù),y=cosx為增函數(shù)B.y=sinx為減函數(shù),y=cosx為減函數(shù)
C.y=sinx為增函數(shù),y=cosx為減函數(shù)D.y=sinx為減函數(shù),y=cosx為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,圓周上的6個(gè)點(diǎn)是該圓周的6個(gè)等分點(diǎn),分別連接AC,CE,EA,BD,DF,F(xiàn)B,在圓內(nèi)部隨機(jī)投擲一點(diǎn),則該點(diǎn)不落在陰影部分內(nèi)的概率是1-$\frac{\sqrt{3}}{π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=3,${a}_{n+1}^{2}={3a}_{n}^{2}+2{a}_{n}{a}_{n+1}$其中n∈N*,設(shè)數(shù)列{bn}滿足bn=$\frac{n{a}_{n}}{(2n+1)•{3}^{n}}$,若存在正整數(shù)m,t(m≠t)使得b1,bm,bt成等比數(shù)列,則$\frac{t}{m}$=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知m>0,n>0,2m+n=mn,設(shè)m+n的最小值是t,則$t-2\sqrt{2}$的值為3.

查看答案和解析>>

同步練習(xí)冊答案