9.命題“對任意x∈R,都有x2≥ln2”的否定為( 。
A.對任意x∈R,都有x2<ln2B.不存在x∈R,都有x2<ln2
C.存在x∈R,使得x2≥ln2D.存在x∈R,使得x2<ln2

分析 全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題.所以,命題“對任意x∈R,都有x2≥ln2”的否定為:存在x∈R,使得x2<ln2.
故選:D.

點(diǎn)評 本題考查命題的否定全稱命題與特稱命題的否定關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)x,y,z>0,滿足xyz+y2+z2=8,則log4x+log2y+log2z的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a=log0.60.5,b=log2(log38),則(  )
A.a<1<bB.a<b<1C.b<1<aD.1<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)二次函數(shù)f(x)=ax2+bx+c的導(dǎo)函數(shù)為f′(x)
(1)若a=1,c=2,且在平面直角坐標(biāo)系xOy中,直線y=f′(x)恰與拋物線y=f(x)相切,求b的值;
(2)若?x∈R,f(x)≥f′(x)恒成立.
①求證:c≥a>0
②求$\frac{^{2}}{{a}^{2}+{c}^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}前n項(xiàng)和Sn,且a1=1,nan+1=(n+2)Sn
(1)求證:{$\frac{{S}_{n}}{n}$}為等比數(shù)列
(2)求{an}通項(xiàng)公式及前n次和Sn
(3)若{bn}滿足:b1=$\frac{1}{2}$,$\frac{_{n+1}}{n+1}$=$\frac{_{n}+{S}_{n}}{n}$,求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.?dāng)?shù)列{an}滿足an+1=$\frac{a_n}{2{a}_{n}+1}$,a1=1.
(1)證明:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn,并證明$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$$>\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{4x+3y≤12}\end{array}\right.$則z=$\frac{y+3}{x+1}$的取值范圍是( 。
A.($\frac{3}{4}$,7)B.[$\frac{2}{3}$,5]C.[$\frac{2}{3}$,7]D.[$\frac{3}{4}$,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知命題p:函數(shù)$y=\sqrt{{x^2}+ax+1}$的值域?yàn)閇0,+∞),命題q:對任意的x∈R,不等式|x|-|x+a|≤1恒成立,若命題p∧(?q)為真命題,則實(shí)數(shù)a的取值范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.${∫}_{0}^{π}$(x+cosx)dx=.

查看答案和解析>>

同步練習(xí)冊答案