15.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,求:
(1)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$);
(2)|3$\overrightarrow{a}$-4$\overrightarrow$|

分析 根據(jù)向量的夾角公式和向量的數(shù)量積運(yùn)算以及模的計(jì)算即可求出.

解答 解:(1)∵向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,
∴$\overrightarrow{a}$$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos120°=-4,
∴(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)=2$\overrightarrow{a}$2-3$\overrightarrow$2-$\overrightarrow{a}$$\overrightarrow$=32-12+4=24,
(2)|3$\overrightarrow{a}$-4$\overrightarrow$|2=9$\overrightarrow{a}$2+16$\overrightarrow$2-24$\overrightarrow{a}$$\overrightarrow$=144+64+96=304,
∴|3$\overrightarrow{a}$-4$\overrightarrow$|=4$\sqrt{19}$.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算和下來的模的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求數(shù)列1$\frac{1}{2}$,3$\frac{3}{4}$,5$\frac{7}{8}$,7$\frac{15}{16}$,…的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z的實(shí)部為2,虛部為1,則(2-i)z=(  )
A.4+iB.4-iC.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)變量x,y滿足的約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,則z=32x-y的最大值9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=sin2x-sinx,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.平行四邊形ABCD中,DF=$\frac{1}{3}$DC,AF交BD于E,證明:DE=$\frac{1}{4}$DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{8}{9}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.滿足{1,2}⊆M⊆{1,2,3,4}的集合M的個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果過點(diǎn)M(-2,0)的直線l與橢圓$\frac{x^2}{2}+{y^2}=1$有公共點(diǎn),那么直線l的斜率k的取值范圍是( 。
A.$(-∞,-\frac{{\sqrt{2}}}{2}]$B.$[\frac{{\sqrt{2}}}{2},+∞)$C.$[-\frac{1}{2},\frac{1}{2}]$D.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案