若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)g(x)=
lgx(x>0)
-
1
x
(x<0)
的圖象在(-12,12)內交點的個數(shù)為( 。
A、18B、20C、21D、22
考點:根的存在性及根的個數(shù)判斷
專題:計算題,作圖題,函數(shù)的性質及應用
分析:由題意,畫出函數(shù)f(x)與g(x)=
lgx(x>0)
-
1
x
(x<0)
在(-12,12)內的圖象,由圖象解答.
解答: 解:因為f(x+2)=f(x),
所以f(x)的周期為2,
在x∈[-1,1]時,f(x)=x2,
畫出函數(shù)f(x)與g(x)=
lgx(x>0)
-
1
x
(x<0)
在(-12,12)內的圖象,

發(fā)現(xiàn)f(x)=x2在x軸右側的圖象與g(x)=lg x有9個交點,
f(x)=x2在x軸左側的圖象與g(x)=-
1
x
在(-12,0)內有11個交點,
一共有20個交點.
故選B.
點評:本題考查了函數(shù)的零點,同時考查了學生的作圖能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a4+a7=10,則{an}的前10項和為( 。
A、10B、20C、25D、50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在棱長為1的正方體ABCD-A1B1C1D1中,點P、Q、R分別是表面A1B1C1D1、BCC1B1、ABB1A1的中心,給出下列四個結論:
①PR與BQ是異面直線;
②RQ⊥平面BCC1B1;
③平面PQR∥平面D1AC;
④過P、Q、R的平面截該正方體所得的截面是邊長為
2
的等邊三角形.
以上結論中正確的是
 
.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+
1
4x
(x>0)
-x2-4x-1(x≤0)
則方程f(x)-a=0有四個實根的充要條件為( 。
A、a≥1B、a≤3
C、1≤a≤3D、1<a<3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,求證:BE•BF=BC•BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程9x+3x+a=0有解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin(ωx+φ),且f(
π
3
+x)=f(
π
3
-x),則f(
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
-2ax,x≤1
loga2x,x>1
(其中a>0且a≠1),若f(-
1
9
)=-
1
2
,則f-1
1
4
)的值為(  )
A、1
B、
1
4
C、3
D、
1
81

查看答案和解析>>

同步練習冊答案