【題目】下列說法正確的是
A. 命題“”的否定是:“”
B. 命題“若,則”的否命題為“若,則”
C. 若命題為真,為假,則為假命題
D. “任意實數(shù)大于”不是命題
【答案】A
【解析】
A,根據(jù)全稱命題的否定是特稱命題,判斷A正確;
B,根據(jù)命題“若p,則q”的否命題為“若¬p,則¬q,判斷即可;
C,根據(jù)復(fù)合命題的真假性判斷正誤即可;
D,根據(jù)命題的定義判斷即可
對于A,根據(jù)全稱命題“x>0,lnx≤x-1”的否定是
特稱命題:“x0>0,lnx0>x0-1”,判斷A正確;
對于B,命題“若x2=1,則x=1”的否命題為
“若x2≠1,則x≠1”,∴B錯誤;
對于C,命題p∨q為真,p∧q為假時,p、q一真一假,
則¬p、¬q一真一假,∴(p)∨(q)為真命題,C錯誤;
對于D,“任意實數(shù)大于0”是命題,且為假命題,D錯誤.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2xcos2x+sin22x﹣ .
(1)求函數(shù)f(x)的最小正周期及對稱中心;
(2)在△ABC中,角B為鈍角,角A,B,C的對邊分別為a、b、c,f( )= ,且sinC= sinA,S△ABC=4,求c的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+ )= a,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)求C1的直角坐標方程;
(2)當C1與C2有兩個公共點時,求實數(shù)a取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+ |﹣|x﹣ |;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫下面的表格:
性質(zhì) | 定義域 | 值域 | 單調(diào)性 | 奇偶性 | 零點 |
f(x) |
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數(shù)解,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4滿足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則x1x2x3x4的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax﹣a﹣x+2,若g(2)=a,則f(2)=( )
A.2
B.
C.
D.a2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在對人們休閑方式的一次調(diào)查中,其中主要休閑方式的選擇有看電視和運動,現(xiàn)共調(diào)查了100人,已知在這100人中隨機抽取1人,抽到主要休閑方式為看電視的人的概率為。
(1)完成下列2×2列聯(lián)表;
休閑方式為看電視 | 休閑方式為運動 | 合計 | |
女性 | 40 | ||
男性 | 30 | ||
合計 |
(2)請判斷是否可以在犯錯誤的概率不超過0.005的前提下認為性別與休閑方式有關(guān)系?
參考公式
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com