【題目】已知函數(shù)fx)=xlnx,

1)求函數(shù)fx)過(﹣1,﹣2)的切線的方程

2)過點P1,t)存在兩條直線與曲線yfx)相切,求t的取值范圍

【答案】(1)yx1(2)(﹣∞,0

【解析】

1)求導(dǎo)得到f′(x)=1+lnx,設(shè)切點為(m,n),利用切線方程公式計算得到答案.

2)導(dǎo)數(shù)為f′(x)=1+lnx,設(shè)切點為(u,v)化簡得到t1lnuu在(0+∞)有兩解,求函數(shù)的最值得到答案.

1)函數(shù)fx)=xlnx的導(dǎo)數(shù)為f′(x)=1+lnx,

設(shè)切點為(mn),可得切線的斜率為1+lnm,切線方程為ymlnm=(1+lnm)(xm),

代入(﹣1,﹣2),可得﹣2mlnm=(1+lnm)(﹣1m),

化為m+lnm1,由yx+lnx在(0,+∞)遞增,且x1時,y1

可得m+lnm1的解為m1

則所求切線的方程為yx1;

2)函數(shù)fx)=xlnx的導(dǎo)數(shù)為f′(x)=1+lnx

設(shè)切點為(u,v),則切線的斜率為f′(u)=1+lnu,

即有切線的方程為yulnu=(1+lnu)(xu),

代入點P1,t),即有tulnu=(1+lnu)(1u),

即為t1lnuu在(0,+∞)有兩解,

gx)=lnxx的導(dǎo)數(shù)為g′(x1,

可得x1gx)遞減,0x1gx)遞增.

可得x1,取得最大值g1)=﹣1,即有t1<﹣1,解得t0

故實數(shù)t的取值范圍時(﹣∞,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,弦過點的周長為,橢圓的離心率為

1)求橢圓的方程;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為的方程為,是一條經(jīng)過原點且斜率大于的直線.

1)以直角坐標(biāo)系原點為極點,軸正方向為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

2)若的一個公共點(異于點),的一個公共點為,當(dāng)時,求的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)函數(shù)在點處的切線方程為,求函數(shù)的解析式;

2)在(1)的條件下,若是函數(shù)的零點,且,求的值;

3)當(dāng)時,函數(shù)有兩個零點,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個內(nèi)角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

【答案】(1) ;(2) .

【解析】試題分析:(1由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2先根據(jù)正弦定理求邊,用角表示周長,根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.

試題解析:1)由正弦定理得

,∴,即

因為,則.

(2)由正弦定理

, ,

∴周長

,

∴當(dāng)

∴當(dāng), 周長的最大值為.

型】解答
結(jié)束】
18

【題目】經(jīng)調(diào)查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

其中: ,

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)

(3)若規(guī)定,一個人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌餐飲公司準(zhǔn)備在10個規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個數(shù),先在其中5個地區(qū)試點,得到試點地區(qū)加盟店個數(shù)分別為1,2,3,4,5時,單店日平均營業(yè)額(萬元)的數(shù)據(jù)如下:

加盟店個數(shù)(個)

1

2

3

4

5

單店日平均營業(yè)額(萬元)

10.9

10.2

9

7.8

7.1

(1)求單店日平均營業(yè)額(萬元)與所在地區(qū)加盟店個數(shù)(個)的線性回歸方程;

(2)根據(jù)試點調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預(yù)計值總和不低于35萬元,求一個地區(qū)開設(shè)加盟店個數(shù)的所有可能取值;

(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個地區(qū)(加盟店都不少于2個)中隨機(jī)選一個地區(qū)加入,求他們選取的地區(qū)相同的概率.

(參考數(shù)據(jù)及公式:,線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)使得對任意實數(shù)x都成立,則稱是一個“k~特征函數(shù)”.則下列結(jié)論中正確命題序號為____________.

是一個“k~特征函數(shù)”;不是“k~特征函數(shù)”;

是常數(shù)函數(shù)中唯一的“k~特征函數(shù)”;④“~特征函數(shù)”至少有一個零點;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在四棱錐中,,,,,,,,的中點。

(1)求證:;

(2)線段上是否存在一點,滿足?若存在,試求出二面角的余弦值;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案