分析 根據(jù)題意,得出D為AC的中點,△ABD中,求出cosα的值,再計算△ABC面積S的最大值即可.
解答 解:等腰△ABC中,D是腰AC上一點,滿足$\overrightarrow{{B}D}$=$\frac{1}{2}$$\overrightarrow{{B}{A}}$+$\frac{1}{2}$$\overrightarrow{{B}C}$,
∴D為AC的中點,如圖所示;
又|${\overrightarrow{{B}D}}$|=2,
cosα=$\frac{{c}^{2}{+(\frac{c}{2})}^{2}{-2}^{2}}{2×c×\frac{c}{2}}$=$\frac{5}{4}$-$\frac{4}{{c}^{2}}$,
∴△ABC面積S=$\frac{1}{2}$×c2×$\sqrt{1{-(\frac{5}{4}-\frac{4}{{c}^{2}})}^{2}}$
=$\frac{1}{2}$×c2×$\sqrt{-\frac{9}{16}+\frac{10}{{c}^{2}}-\frac{16}{{c}^{4}}}$
=$\frac{1}{2}$×$\frac{1}{4}$×$\sqrt{-{9c}^{4}+16{0c}^{2}-256}$,
當c2=$\frac{160}{18}$=$\frac{80}{9}$時,
-9c4+160c2-256取得最大值為
$\frac{4×(-9)×(-256){-160}^{2}}{4×(-9)}$=${(\frac{64}{3})}^{2}$,
即△ABC面積S的最大值為$\frac{1}{8}$×$\frac{64}{3}$=$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.
點評 本題考查了平面向量的應用問題,也考查了余弦定理和正弦定理的運用問題,是綜合性問題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,3] | B. | [-2,2] | C. | (2,3] | D. | [2,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(2)<f(-\frac{3}{2})<f(-1)$ | B. | $f(-1)<f(-\frac{3}{2})<f(2)$ | C. | $f(2)<f(-1)<f(-\frac{3}{2})$ | D. | $f(-\frac{3}{2})<f(-1)<f(2)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com