5.已知集合{A}={x|y=$\sqrt{6+x-{x^2}$},B={x|y=log2(2-x)},則A∩(∁RB)=( 。
A.[-2,3]B.[-2,2]C.(2,3]D.[2,3]

分析 求出A中x的范圍確定出A,求出B中y的范圍確定出B,求出B補集與A的交集即可.

解答 解:因為A={x}={x|y=$\sqrt{6+x-{x^2}$}=[-2,3],B={x|y=log2(2-x)}=(-∞,2),則∁RB=[2,+∞),
所以A∩(∁RB)=[2,3].
故選:D.

點評 本題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.令數(shù)列{an}滿足an+1=an+2n,a1=1,則an=n2-n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:m2n÷$\sqrt{\frac{{m}^{3}}{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)+h(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)0<x<π,且方程f(x)=m有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和;
(3)在銳角△ABC中,若f(A)=3+$\sqrt{3}$,求f(B)+f(C)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知α、β∈(0,π),且cos(2α+β)-2cos(α+β)cosα=$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別是a,b,c,且滿足:a2=(b-c)2+(2-$\sqrt{3}$)bc,又sinAsinB=$\frac{1+cosC}{2}$.
(Ⅰ)求角A的大;
(Ⅱ)若a=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等腰三角形ABC中,D是腰AC上一點,滿足$\overrightarrow{{B}D}$=$\frac{1}{2}$$\overrightarrow{{B}{A}}$+$\frac{1}{2}$$\overrightarrow{{B}C}$,且|${\overrightarrow{{B}D}}$|=2,設(shè)角∠BAC=α,AB=AC=c,則△ABC面積S的最大值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,如果輸入的N=5,那么輸出的S=( 。
A.$\frac{10}{9}$B.$\frac{16}{9}$C.$\frac{8}{5}$D.$\frac{20}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=3cos2$\frac{ωx}{2}+\frac{{\sqrt{3}}}{2}sinωx-\frac{3}{2}$(ω>0)在一個周期內(nèi)的圖象如圖所示,點A為圖象的最高點,B,C為圖象與x軸的交點,且三角形ABC的面積為$\frac{\sqrt{3}}{4}$π.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)=$\frac{4\sqrt{3}}{5}$,x0∈($\frac{π}{12}$,$\frac{π}{3}$),求f(x0+$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊答案