11.已知正數(shù)a,b滿足2a•4b≤8,則ab的最大值為$\frac{9}{8}$.

分析 正數(shù)a,b滿足2a•4b≤8,化為2a+2b≤23,可得a+2b≤3.再利用基本不等式的性質(zhì)即可得出.

解答 解:∵正數(shù)a,b滿足2a•4b≤8,化為2a+2b≤23,
∴a+2b≤3.
則ab=$\frac{1}{2}a•2b$≤$\frac{1}{2}$$(\frac{a+2b}{2})^{2}$=$\frac{1}{2}×(\frac{3}{2})^{2}$=$\frac{9}{8}$,當且僅當a=2b=$\frac{3}{2}$時取等號.
故答案為:$\frac{9}{8}$.

點評 本題考查了指數(shù)冪的運算性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.2位男生和3位女生共5位同學(xué)站成一排,若3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)是72種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線x=a是函數(shù)y=sin(x+$\frac{π}{6}$)圖象的一條對稱軸,則a的值可以是( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.-$\frac{π}{6}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.①x+$\frac{1}{x}$≥2;②|x+$\frac{1}{x}$|≥2;③$\frac{{x}^{2}+{y}^{2}}{xy}$≥2;④$\frac{{x}^{2}+{y}^{2}}{2}$>xy;⑤$\frac{|x+y|}{2}$≥$\sqrt{|xy|}$.其中正確的是②(寫出序號即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在“世界杯”足球賽閉幕后,某中學(xué)學(xué)生會對本校高一年級1000名學(xué)生收看比賽的情況用隨機抽樣方式進行調(diào)查,樣本容量為50,將數(shù)據(jù)分組整理后,列表如下:
觀看場數(shù)01234567
觀看人數(shù)占調(diào)查人數(shù)的百分比8%10%20%26%16%m%6%2%
從表中可以得出正確的結(jié)論為(  )
A.表中m的數(shù)值為8
B.估計觀看比賽不低于4場的學(xué)生約為360人
C.估計觀看比賽不低于4場的學(xué)生約為720人
D.若從1000名學(xué)生中抽取樣容量為50的學(xué)生時采用系統(tǒng)抽樣,則分段的間隔為25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且4Sn=a${\;}_{n}^{2}$+2an+1(n∈N*).
(1)求{an}的通項公式;
(2)設(shè)f(n)=$\left\{\begin{array}{l}{{a}_{n},n=2k-1}\\{f(\frac{n}{2}),n=2k}\end{array}\right.$(n,k∈N*),bn=f(2n+4),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)全集U={x|x≥2,x∈N}.集合A={x|x2≥5,x∈N},則∁UA={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等比數(shù)列{an}中,a1=$\frac{1}{3}$,an=81,Sn=$\frac{364}{3}$.
(1)求公比q;
(2)求項數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|x2-1≤0},N={x|-2<x<1,x∈Z},則M∩N( 。
A.{-1,0}B.{1}C.{-1,0,1}D.

查看答案和解析>>

同步練習(xí)冊答案