17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+a,(x>2)}\\{-{x}^{2}+2ax,(x≤2)}\\{\;}\end{array}\right.$,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),則實數(shù)a的取值范圍是(-∞,2)∪($\frac{13}{3}$,+∞).

分析 依題意,x>2時,f(x)遞增,考慮x≤2時,函數(shù)的單調(diào)性,即可求得結(jié)論.

解答 解:依題意,x>2時,f(x)遞增,
分情況討論:
①x≤2時,f(x)=-x2+2ax不是單調(diào)的,
對稱軸為x=a,則a<2;
②x≤2時,f(x)=-x2+2ax是單調(diào)遞增,但f(x)在R上不單調(diào).
即有a≥2且a+9<-4+4a,解得a>$\frac{13}{3}$.
綜合得:a的取值范圍是(-∞,2)∪($\frac{13}{3}$,+∞).
故答案為:(-∞,2)∪($\frac{13}{3}$,+∞).

點評 本題考查函數(shù)的單調(diào)性,注意運用指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.(文科)(1)化簡$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3}{2}π)}{cos(-3π+α)sin(3π-α)}$.
(2)已知f(x)=$\frac{1}{2}$sin2x+sinx,求f′(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知定義在R上的函數(shù)f(x)滿足f(x)=-f(x+$\frac{5}{2}$),且f(1)=2,則f(2016)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+1}$是定義在區(qū)間[-1,1]上的奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在[-1,1]上的單調(diào)性,并證明;
(3)解不等式:f(5x-1)<f(6x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.集合A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B=∅,則實數(shù)a的取值范圍是a<-1或a>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知(x-3)${\;}^{-\frac{1}{3}}$<(1+2x)${\;}^{-\frac{1}{3}}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,將f(x)的圖象向右平移$\frac{π}{6}$,再將所得圖象每個點縱坐標不變,橫坐標伸長為原來的2倍得到y(tǒng)=g(x)的圖象,則函數(shù)y=g(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{18}$]上值域為( 。
A.[-2,-1]B.[-$\sqrt{2}$,-1]C.[-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$]D.[-1,-$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=x3-x2+a是[0,a]上“雙中值函數(shù)”,則實數(shù)a的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知x<3,則y=2x+$\frac{1}{x-3}$的取值范圍是(-∞,6-2$\sqrt{2}$].

查看答案和解析>>

同步練習冊答案