分析 先分別畫出集合A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},表示的平面圖形,集合A表示是一個正方形,集合B表示一個圓.再結(jié)合題設(shè)條件,欲使得A∩B=∅,只須A、B點(diǎn)在圓外即可,將點(diǎn)的坐標(biāo)代入圓的方程建立不等式求解即可.
解答 解:分別畫出集合A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},表示的平面圖形,集合A表示是一個正方形,集合B表示一個圓.如圖所示.
其中A(a+1,1),B(a-1,1),
欲使得A∩B=∅,只須A、B點(diǎn)在圓外即可,
∴(a+1-1)2+(1-1)2>1且(a-1-1)2+(1-1)2>1,
解得:-1≤a≤1或1≤a≤3,
即a<-1或a>3.
故答案為:a<-1或a>3.
點(diǎn)評 本小題主要考查二元一次不等式(組)與平面區(qū)域、集合關(guān)系中的參數(shù)取值問題、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (-1,2) | C. | (-1,0) | D. | (-5,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com