8.已知復(fù)數(shù)z=$\frac{2-i}{1+2i}$,則|z|等于( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),然后代入復(fù)數(shù)模的公式計(jì)算.

解答 解:∵z=$\frac{2-i}{1+2i}$=$\frac{(2-i)(1-2i)}{(1+2i)(1-2i)}=\frac{-5i}{5}=-i$,
∴|z|=1.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=(x2-3x+3)ex的定義域?yàn)閇-2,t],設(shè)f(-2)=m,f(t)=n.
(Ⅰ)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(Ⅱ)求證:m<n;
(Ⅲ)若不等式$\frac{f(x)}{{e}^{x}}$+7x-2>k(xlnx-1)(k為正整數(shù))對(duì)任意正實(shí)數(shù)恒成立,求的最大值,并證明lnx<$\frac{14}{9}$(解答過(guò)程可參考使用以下數(shù)據(jù)ln7≈1.95,ln8≈2.08)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題錯(cuò)誤的是( 。
A.“若x≠a且x≠b,則x2-(a+b)x+ab≠0”的否命題是“若x=a或x=b,則x2-(a+b)x+ab=0”
B.若p∧q為假命題,則p,q均為假命題
C.命題“?x0∈(0,+∞)lnx0=x0-1”的否定是“?x∈(0,+∞),lnx≠x-1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2cos2ωx+2$\sqrt{3}$sinωxcosωx-1,且f(x)的周期為2.
(Ⅰ)當(dāng)$x∈[{-\frac{1}{2},\frac{1}{2}}]$時(shí),求f(x)的最值;
(Ⅱ)若$f(\frac{α}{2π})=\frac{1}{4}$,求$cos(\frac{2π}{3}-α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$,命題q:?x∈(0,$\frac{π}{2}$),sinx<tanx,則下列命題中的真命題是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,且c•cosA-acosC=$\frac{2}{3}$b.
(1)其$\frac{tanA}{tanC}$的值;
(2)若tanA,tanB,tanC成等差數(shù)列,求$\frac{{a}^{2}-^{2}-{c}^{2}}{bc}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x-2)^{2}+2,x≤1}\\{|x-2|,x>1}\end{array}\right.$,則f(f(3))=1,f(x)的單調(diào)減區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$f(x)=-2tanx+m,x∈[-\frac{π}{4},\frac{π}{3}]$有零點(diǎn),則實(shí)數(shù)m的取值范圍是$[-2\;,\;2\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等差數(shù)列{an}中,a3=-13,a5=-11,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(-1)n$|\begin{array}{l}{{a}_{n}+1}\end{array}|$(n<16),求數(shù)列{bn+$\frac{1}{{a}_{n}}$}的最大值和最小值;
(3)若cn=an+16+$\frac{1}{{(a}_{n}+16)^2}$,記數(shù)列{cn}前n項(xiàng)和為Sn
求證:$\frac{n^2(n+1)+3n-1}{2n}$≤Sn≤$\frac{6n^3+9n^2+23n-2}{6(2n+1)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案