分析 (1)由已知利用倍角公式,正弦定理即可解得cosA的值.
(2)由余弦定理解得c的值,利用倍角公式可求cosB=$\frac{1}{3}$>0,驗根即可得解.
解答 解:(1)因為∠B=2∠A,
所以由正弦定理有$\frac{a}{sinA}=\frac{sinB}=\frac{sin2A}=\frac{2sinAcosA}$,
得$cosA=\frac{2a}=\frac{{2\sqrt{6}}}{2×3}=\frac{{\sqrt{6}}}{3}$.
(2)由余弦定理a2=b2+c2-2bccosA得c2-8c+15=0解得c=3或c=5,
因為∠B=2∠A,
所以$cosB=cos2A=2{cos^2}A-1=2×{(\frac{{\sqrt{6}}}{3})^2}-1=\frac{1}{3}>0$,
經(jīng)驗證AB=3不符合題意,
所以 AB=5.
點評 本題主要考查了倍角公式,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 0或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 以π為周期的奇函數(shù) | B. | 以$\frac{π}{2}$為周期的奇函數(shù) | ||
C. | 以π為周期的偶函數(shù) | D. | 以$\frac{π}{2}$為周期的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com