3.若圓柱OO′的底面半徑與高均為1,則其表面積為4π.

分析 根據(jù)已知中圓柱的底面半徑及高,代入圓柱表面積公式S=2πr(r+h)可得答案

解答 解:∵圓柱OO′的底面半徑與高均為1,
即r=h=1,
故圓柱的表面積S=2πr(r+h)=4π,
故答案為:4π

點評 本題考查的知識點是旋轉(zhuǎn)體,圓柱的表面積,熟練掌握圓柱的表面積公式,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在一次口試中,要從10道題中隨機抽出3道題進(jìn)行回答,答對了其中2道題就獲得及格,某考生會回答10道題中的6道題,那么他(她)獲得及格的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋擲一枚均勻硬幣兩次,已知有一次是正面向上,則另一次正面向上的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在上(0,$\frac{π}{4}$)的函數(shù)f(x)滿足2f(x)<f′(x)tan2x,f′(x)是f(x)的導(dǎo)函數(shù),則( 。
A.$\sqrt{3}$f($\frac{π}{12}$)<f($\frac{π}{6}$)B.f($\frac{1}{4}$)$>2f(\frac{π}{12})$sin$\frac{1}{2}$C.$\sqrt{3}$f($\frac{π}{8}$)>$\sqrt{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{12}$)>f($\frac{π}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知A(2,0),B(3,3),直線l∥AB,則直線l的斜率為( 。
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知角α的終邊與圓x2+y2=4相交于點P(1,-$\sqrt{3}$),則sinα的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線x+1=0的傾斜角為( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,有一條長為a米的斜坡AB,它的坡角為45°,現(xiàn)保持坡高AC不變,將坡角改為30°,則斜坡AD的長為$\sqrt{2}$a米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x4-2x2+5的單調(diào)減區(qū)間為( 。
A.(-∞,-1)及(0,1)B.(-1,0)及(1,+∞)C.(-1,1)D.(-∞,-1)及(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案