11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2x+4,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,若f[f(a)]>f[f(a)+1],則實數(shù)a的取值范圍為( 。
A.$(-\frac{5}{2},-2]$B.$[-\frac{5}{2},-2]$C.[-2,0)D.[-2,0]

分析 根據(jù)函數(shù)的單調(diào)性,通過討論a的范圍判斷函數(shù)值的大小,從而確定a的具體范圍即可.

解答 解:函數(shù)f(0)在(-∞,0]、(0,+∞)均單調(diào)遞增,
且$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$.
當f(a)≥0,即a≥-2時,則f[f(a)]<f[f(a)+1],不合題意;
同理:當f(a)+1≤0,即$a≤-\frac{5}{2}$時,也不合題意.
當f(x1)>f(x2)時,-1<f(a)<0,0<f(a)+1<1,
則2<f[f(a)]<4,1<f[f(a)+1]<2,成立.
故選:A.

點評 本題考查了函數(shù)求值問題,考查函數(shù)的單調(diào)性以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=cosx•ln$\frac{{x}^{2}+2}{{2(x}^{2}+1)}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.四個數(shù)40.2,30.5,30.4,log0.40.5的大小順序是( 。
A.${4^{0.2}}<{3^{0.4}}<{log_{0.4}}0.5<{3^{0.5}}$B.${log_{0.4}}0.5<{3^{0.4}}<{4^{0.2}}<{3^{0.5}}$
C.${log_{0.4}}0.5<{3^{0.5}}<{4^{0.2}}<{3^{0.4}}$D.${log_{0.4}}0.5<{4^{0.2}}<{3^{0.4}}<{3^{0.5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求值:
(I)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$;
(II) $lg14-2lg\frac{7}{3}+lg7-lg18$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C上的點到點F(0,1)的距離比它到直線y=-3的距離小2.
(1)求曲線C的方程;
(2)過點F且斜率為k的直線l交曲線C于A,B兩點,交圓F:x2+(y-1)2=1于M,N兩點(A,M兩點相鄰).
①若$\overrightarrow{BF}$=λ$\overrightarrow{BA}$,當λ∈[$\frac{1}{2}$,$\frac{2}{3}$]時,求k的取值范圍;
②過A,B兩點分別作曲線C的切線l1,l2,兩切線交于點P,求△AMP與△BNP面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的為( 。
A.y=lnx3B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知偶函數(shù)f(x)的定義域為R,且在(-∞,0)上是增函數(shù),則f(-$\frac{3}{4}$)與f(a2-a+1)的大小關(guān)系為(  )
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個透明密閉的正方體容器中,恰好盛有該容器一半容積的水,任意轉(zhuǎn)動這個正方體,則水面在容器中的形狀可以是:(1)三角形;(2)四邊形;(3)五邊形;(4)六邊形,其中正確的結(jié)論是( 。
A.(1)(3)B.(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若a=2,F(xiàn)(x)=f(x)-g(x),求F(x)的單凋區(qū)間;
(2)若函數(shù)g(x)=ax+b是函數(shù)f(x)=lnx-$\frac{1}{x}$的圖象的切線,求a+b的最小值;
(3)求證:$2{e^{x-\frac{5}{2}}}-lnx+\frac{1}{x}$>0.

查看答案和解析>>

同步練習(xí)冊答案