若x,y,z∈R,且2x+y+2z=6,則x2+y2+z2的最小值為
 
考點(diǎn):二維形式的柯西不等式
專題:不等式的解法及應(yīng)用
分析:由條件利用柯西不等式可得(22+1+22)(x2+y2+z2)≥(2x+y+2)2=36,由此求得x2+y2+z2 的最小值.
解答: 解:由于(22+1+22)(x2+y2+z2)≥(2x+y+2)2=36,
即 9(x2+y2+z2)≥36,∴x2+y2+z2≥4,即x2+y2+z2 的最小值為4,
故答案為:4.
點(diǎn)評(píng):本題主要考查柯西不等式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組共有A,B,C,D四位同學(xué),他們的身高(單位:米)及體重指標(biāo)(單位:千克/米2
如下表所示:
ABCD
身高1.691.731.751.80
體重指標(biāo)19.225.018.524.8
(1)求這四位同學(xué)體重指標(biāo)的中位數(shù).
(2)從該小組身高低于1.80的同學(xué)中任選2人,求選到的2人身高都在1.75以下的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品在某零售攤位的;零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)資料如表所示:由表可得回歸直線方程為
y
=-4x+
a
,據(jù)此模型預(yù)測(cè)零售價(jià)為15元時(shí),每天的銷售量為
 

x16171819
y50344131

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四個(gè)函數(shù)f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[-π,π]上的圖象如圖,則函數(shù)與序號(hào)匹配正確的是( 。
A、f(x)-①,g(x)-②,h(x)-③,φ(x)-④
B、f(x)-①,φ(x)-②,g(x)-③,h(x)-④
C、g(x)-①,h(x)-②,f(x)-③,φ(x)-④
D、f(x)-①,h(x)-②,g(x)-③,φ(x)-④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)與C2
y2
b2
-
x2
a2
=1(a>0,b>0),給出下列四個(gè)結(jié)論:
①C1與C2的焦距相等;
②C1與C2的離心率相等;
③C1與C2的漸近線相同;
④C1的焦點(diǎn)到其漸近線的距離與C2的焦點(diǎn)到其漸近線的距離相等.
其中一定正確的結(jié)論是
 
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題中:
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③根據(jù)散點(diǎn)圖求得的回歸直線方程可能是沒有意義的;
④若某項(xiàng)測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2),且P(ξ≤4)=0.9,則P(ξ≤-2)=0.1.
其中真命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級(jí)共有300人參加數(shù)學(xué)期中考試,從中隨機(jī)抽取4名男生和4名女生的試卷,獲得某一道題的樣本,該題得分的莖葉圖如圖.
(Ⅰ) 求樣本的平均數(shù);
(Ⅱ) 設(shè)該題得分大于樣本的平均數(shù)為合格,根據(jù)樣本數(shù)據(jù)估計(jì)該校高三年級(jí)有多少名同學(xué)此題成績(jī)合格;
(Ⅲ)在這4名男生和4名女生中,分別隨機(jī)抽取一人,求該題女生得分不低于男生得分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為1的正方形,其中正視圖、側(cè)視圖中的兩條虛線互相垂直,則該幾何體的體積是( 。
A、
5
6
B、
3
4
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx+cosx+sinx•cosx的值域?yàn)椋ā 。?/div>
A、[-1,1]
B、[-1,
2
+
1
2
]
C、[-1,
2
-
1
2
]
D、[-1,
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案