分析 (1)確定∠CEF為異面直線AD和EC所成的角,即可求異面直線AD和EC所成的角的大。
(2)連接BH交CE于點(diǎn)O,連接FO,證明:FO∥GH,即可證明直線GH∥平面CEF.
解答 (1)解:∵E,F(xiàn)分別是AB,BD的中點(diǎn),
∴AD∥FE,
∴∠CEF為異面直線AD和EC所成的角.
在△CFE中,可求$CF=CE=\sqrt{3}$,$FE=\sqrt{3}$,∠ECF=60°,
故∠CEF=60°,即異面直線AD和EC所成的角是60°.
(2)證明:連接BH交CE于點(diǎn)O,連接FO,
∵E為AB的中點(diǎn),H為AC的中點(diǎn),
∴O為△ABC的重心,
∴$\frac{BO}{OH}=\frac{2}{1}$.
∵F為BD的中點(diǎn),G為FD的中點(diǎn),
∴$\frac{BF}{FG}=\frac{2}{1}$,
∴$\frac{BO}{OH}=\frac{BF}{FG}$,
∴FO∥GH,
∵FO?面CEF,GH?面CEF,
∴GH∥面CEF.
點(diǎn)評(píng) 本題考查空間角,考查線面平行的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9π | B. | 36π | C. | $\frac{9}{2}π$ | D. | $\frac{9}{4}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{66}}}{11}$ | B. | $\frac{{2\sqrt{22}}}{11}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p:0∈N,q:若A∪B=A,則A⊆B | |
B. | p:若b2=ac,則a,b,c成等比數(shù)列;q:y=cosx在$[\frac{π}{2},\frac{3π}{2}]$上是減函數(shù) | |
C. | p:若$\overrightarrow a•\overrightarrow b>0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為銳角;q:當(dāng)a<-1時(shí),不等式a2x2-2x+1>0恒成立 | |
D. | p:在極坐標(biāo)系中,圓$ρ=2cos(θ-\frac{π}{4})$的圓心的極坐標(biāo)是$(1,-\frac{π}{4})$;q:拋物線y=4x2的焦點(diǎn)坐標(biāo)是(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 增函數(shù)且有最大值 | B. | 增函數(shù)且沒(méi)有最大值 | ||
C. | 不是增函數(shù)且有最大值 | D. | 不是增函數(shù)且沒(méi)有最大值 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com