16.新疆某中學(xué)共有教師32人,其中男教師12人,女教師20人,這32名教師的身高如下面的莖葉圖所示(單位:cm).為“打擊疆獨(dú)分子,確保學(xué)校師生安全”,校委會(huì)決定:身高在175cm以上(含175cm)的男教師和身高在172cm以上(含172cm)的女教師組成“校外巡邏隊(duì)”,其余教師組成“校內(nèi)巡邏隊(duì)”.
(1)若用分層抽樣的方法從“校外巡邏隊(duì)員”和“校內(nèi)巡邏隊(duì)員”中抽取中選8人,然后在從這8人中選3人,求至少有1人是“校外巡邏隊(duì)員”的概率;
(2)若從所有“校外巡邏隊(duì)員”中選2人作為“校外巡邏隊(duì)”隊(duì)長,用X表示“校外巡邏隊(duì)”隊(duì)長為女教師的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.

分析 (1)由莖葉圖得“校外巡邏隊(duì)員”有12人,“校內(nèi)巡邏隊(duì)員”有20人,用分層抽樣在“校外巡邏隊(duì)員”選3人,“校內(nèi)巡邏隊(duì)員”中選5人,由此能求出從這8人中選3人,至少有1人是“校外巡邏隊(duì)員”的概率.
(2)由題意X的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 解:(1)由莖葉圖得身高在175cm以上(含175cm)的男教師有8人,身高在172cm以上(含172cm)的女教師有4人,
∴“校外巡邏隊(duì)員”有12人,“校內(nèi)巡邏隊(duì)員”有20人,
用分層抽樣的方法從“校外巡邏隊(duì)員”和“校內(nèi)巡邏隊(duì)員”中抽取中選8人,
則“校外巡邏隊(duì)員”選:$\frac{8}{32}×12$=3人,“校內(nèi)巡邏隊(duì)員”選:$\frac{8}{32}×20$=5人,
從這8人中選3人,至少有1人是“校外巡邏隊(duì)員”的概率:
p=1-$\frac{{C}_{5}^{3}}{{C}_{8}^{3}}$=1-$\frac{10}{56}$=$\frac{23}{28}$.
(2)由題意X的可能取值為0,1,2,
P(X=0)=$\frac{{C}_{8}^{2}}{{C}_{12}^{2}}$=$\frac{28}{66}$=$\frac{14}{33}$,
P(X=1)=$\frac{{C}_{8}^{1}{C}_{4}^{1}}{{C}_{12}^{2}}$=$\frac{32}{66}$=$\frac{16}{33}$,
P(X=2)=$\frac{{C}_{4}^{2}}{{C}_{12}^{2}}$=$\frac{6}{66}$=$\frac{1}{11}$,
∵X的分布列為:

X 0 1 2
 P $\frac{14}{33}$ $\frac{16}{33}$ $\frac{1}{11}$
EX=$0×\frac{14}{33}+1×\frac{16}{33}+2×\frac{1}{11}$=$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線均與圓(x-2)2+y2=1相切,則雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$y={(\frac{1}{5})^{x+1}}+m$的圖象不過第一象限,則實(shí)數(shù)m的取值范圍是(-∞,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和${s_n}=32n-{n^2}$,
(1)求數(shù)列{an}的通項(xiàng)公式;    
(2)求數(shù)列{an}的前多少項(xiàng)和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若x、y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{y≤x}\\{y≥1}\end{array}\right.$,z=ax+y最大時(shí)的最優(yōu)解有無數(shù)個(gè),則a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2004 年世界衛(wèi)生組織、聯(lián)合國兒童基金會(huì)等機(jī)構(gòu)將青蒿素作為一線抗瘧藥品推廣.2015 年12 月10 日,我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng).目前,國內(nèi)青蒿人工種植發(fā)展迅速.
某農(nóng)科所為了深入研究海拔因素對(duì)青蒿素產(chǎn)量的影響,在山上和山下的試驗(yàn)田中分別種植了100 株青蒿進(jìn)行對(duì)比試驗(yàn).現(xiàn)在從山上和山下的試驗(yàn)田中各隨機(jī)選取了4株青蒿作為樣本,每株提取的青蒿素產(chǎn)量(單位:克)如表所示:
 編號(hào)
位置
 ① ② ③ ④
 山上 5.0 3.8 3.6 3.6
 山下 3.6 4.4 4.4 3.6
(Ⅰ)根據(jù)樣本數(shù)據(jù),試估計(jì)山下試驗(yàn)田青蒿素的總產(chǎn)量;
(Ⅱ)記山上與山下兩塊試驗(yàn)田單株青蒿素產(chǎn)量的方差分別為$s_1^2$,$s_2^2$,根據(jù)樣本數(shù)據(jù),試估計(jì)$s_1^2$與$s_2^2$的大小關(guān)系(只需寫出結(jié)論);
(Ⅲ)從樣本中的山上與山下青蒿中各隨機(jī)選取1 株,記這2 株的產(chǎn)量總和為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C對(duì)應(yīng)的邊分別為a,b,c.若a2=(b+c)2-bc,則A$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.口袋中有5個(gè)小球,其中兩個(gè)黑球三個(gè)白球,從中隨機(jī)取出兩個(gè)球,則在取到的兩個(gè)球同色的條件下,取到的兩個(gè)球都是白球的概率(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知${({\sqrt{x}+\frac{1}{{2\root{4}{x}}}})^n}$的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求第三項(xiàng)的二項(xiàng)式系數(shù)及項(xiàng)的系數(shù);
(2)求含x項(xiàng)的系數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案