如圖①,②,③,④,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為( )

A.a(chǎn)<b<1<c<d B.b<a<1<d<c

C.1<a<b<c<d D.a(chǎn)<b<1<d<c

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從集合{$\frac{1}{2}$,$\frac{1}{3}$,2,3}中任取一個(gè)數(shù)記做a,從集合{-2,-1,1,2}中任取一個(gè)數(shù)記做b,則函數(shù)y=ax+b的圖象經(jīng)過第三象限的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中為奇函數(shù)的是( 。
A.y=xcosxB.y=xsinxC.y=|1nx|D.y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.二手車經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的A型號(hào)二手汽車的使用年數(shù)x與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
使用年數(shù)x234567
售價(jià)y201286.44.43
z=lny3.002.482.081.861.481.10
下面是z關(guān)于x的折線圖:

(1)由折線圖可以看出,可以用線性回歸模型擬合z與x的關(guān)系,請(qǐng)用相關(guān)數(shù)加以說明;
(2)求y關(guān)于x的回歸方程并預(yù)測(cè)某輛A型號(hào)二手車當(dāng)使用年數(shù)為9年時(shí)售價(jià)約為多少?($\widehat$、$\widehat{a}$小數(shù)點(diǎn)后保留兩位有效數(shù)字).
(3)基于成本的考慮,該型號(hào)二手車的售價(jià)不得低于7118元,請(qǐng)根據(jù)(2)求出的回歸方程預(yù)測(cè)在收購該型號(hào)二手車時(shí)車輛的使用年數(shù)不得超過多少年?
參考公式:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$.
參考數(shù)據(jù):
$\sum_{i=1}^{6}{x}_{i}{y}_{i}$=187.4,$\sum_{i=1}^{6}{x}_{i}{z}_{i}$=47.64,$\sum_{i=1}^{6}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}}$=13.96,
$\sqrt{\sum_{i=1}^{6}({z}_{i}-\overline{z})^{2}}$=1.53,ln1.46≈0.38,ln0.7118≈-0.34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對(duì)于數(shù)列{an},定義H0=$\frac{{{a_1}+2{a_2}+…+{2^{n-1}}{a_n}}}{n}$為{an}的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”H0=2n+1,記數(shù)列{an-20}的前n項(xiàng)和為Sn,則Sn的最小值為( 。
A.-64B.-68C.-70D.-72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=x2-2x+m,在x∈[0,3]上的最大值為1,則實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的周期為π,若f(α)=1,則$f(α+\frac{3π}{2})$=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)某中學(xué)的高中女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,3,…,n),用最小二乘法近似得到回歸直線方程為$\hat y=0.85x-85.71$,則下列結(jié)論中不正確的是( 。
A.y與x具有正線性相關(guān)關(guān)系
B.回歸直線過樣本的中心點(diǎn)$(\overline x,\overline y)$
C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)$z=\frac{-2+3i}{i},i$是虛數(shù)單位,則z的共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案