分析 (1)根據(jù)棱柱的體積公式,求出該幾何體的體積;
(2)根據(jù)三棱柱ABC-A1B1C1為直三棱柱,得出BC⊥平面ACC1A1,從而證明A1C⊥平面AB1C1;
(3)當(dāng)E為棱AB的中點(diǎn)時(shí),DE∥平面AB1C1,先證明平面DEF∥平面AB1C1,即可證明DE∥平面AB1C1.
解答 解:(1)四邊形BCC1B1是矩形,BB1=CC1=$\sqrt{3}$,BC=1,
且AA1C1C是邊長為$\sqrt{3}$的正方形,垂直于底面BB1C1C,
所以該幾何體的體積為V=$\frac{1}{2}$×1×$\sqrt{3}$×$\sqrt{3}$=$\frac{3}{2}$;
(2)證明:因?yàn)椤螦CB=90°,所以BC⊥AC,
又因?yàn)槿庵鵄BC-A1B1C1為直三棱柱,
所以BC⊥CC1,
又因?yàn)锳C∩CC1=C,
所以BC⊥平面ACC1A1,
所以BC⊥A1C;
又因?yàn)锽1C1∥BC,
所以B1C1⊥A1C,
又因?yàn)樗倪呅蜛CC1A1為正方形,
所以A1C⊥AC1,
又B1C1∩AC1=C1,
所以A1C⊥平面AB1C1;
(3)當(dāng)E為棱AB的中點(diǎn)時(shí),DE∥平面AB1C1,
證明:如圖所示,
取BB1的中點(diǎn)F,連接EF、FD、DE,
因?yàn)镈、E、F分別是棱CC1,AB和BB1的中點(diǎn),
所以EF∥AB1,
又AB1?平面AB1C1,EF?平面AB1C1,
所以EF∥平面AB1C1;
又FD∥B1C1,所以FD∥平面B1C1,
又EF∩FD=F,所以平面DEF∥平面AB1C1,
而DE?平面DEF,所以DE∥平面AB1C1.
點(diǎn)評 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了利用三視圖求幾何體的體積的應(yīng)用問題,是綜合性題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 102 | B. | $\frac{865}{8}$ | C. | $\frac{817}{8}$ | D. | 108 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{\sqrt{5}-1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com