10.已知$\frac{x^2}{8}+\frac{y^2}{4}$=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn)A(2,2)在橢圓上,且AF2與x軸垂直,過A作直線與橢圓交于另一點(diǎn)于B,求△AOB面積的最大值.

分析 由題意,要使△AOB面積最大,則B到OA所在直線距離最遠(yuǎn),求出和OA平行且和橢圓相切的直線方程,把切點(diǎn)到直線OA的距離轉(zhuǎn)化為原點(diǎn)O到切線的距離,則三角形AOB面積的最大值可求.

解答 解:由題意可得,B為橢圓上除($2,\sqrt{2}$),(-2,-$\sqrt{2}$)外的點(diǎn).
要使△AOB面積最大,則B到OA所在直線距離最遠(yuǎn),
設(shè)與OA平行的直線方程為$y=\frac{\sqrt{2}}{2}x+b$,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{\sqrt{2}}{2}x+b}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,消去y并化簡得${x}^{2}+\sqrt{2}bx+^{2}-4=0$.
由$△=(\sqrt{2}b)^{2}-4(^{2}-4)=0$,解得b=±$2\sqrt{2}$.
不妨取b>0,
∴與直線OA平行,且與橢圓相切且兩直線方程為:$y=\frac{\sqrt{2}}{2}x+2\sqrt{2}$.
化為一般式得:$\sqrt{2}x-2y+4\sqrt{2}=0$.
則B到直線OA的距離等于O到直線$\sqrt{2}x-2y+4\sqrt{2}=0$的距離,等于$\frac{|4\sqrt{2}|}{\sqrt{(\sqrt{2})^{2}+(-2)^{2}}}=\frac{4\sqrt{3}}{3}$.
又|OA|=$\sqrt{{2}^{2}+(\sqrt{2})^{2}}=\sqrt{6}$.
∴△AOB面積的最大值為$S=\frac{1}{2}×\sqrt{6}×\frac{4\sqrt{3}}{3}=2\sqrt{2}$.

點(diǎn)評(píng) 本題考查了直線和圓錐曲線的位置關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了點(diǎn)到直線的距離公式的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面直角坐標(biāo)系xOy中,經(jīng)過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)的直線x-y-$\sqrt{3}$=0與C相交于M,N兩點(diǎn),P為MN的中點(diǎn),且OP斜率是-$\frac{1}{4}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l分別與橢圓C和圓D:x2+y2=r2(b<r<a)相切于點(diǎn)A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=ax3-x+1(x∈R),若對(duì)于任意x∈[-1,1]都有f(x)≥0,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,2]B.[0+∞)C.[0,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+1)-x2-ax+b在點(diǎn)(0,f(0))處的切線方程為y+2=0.
(Ⅰ)求函數(shù)f(x)的解析式
(Ⅱ)若函數(shù)g(x)=f′(x)+3x在區(qū)間(m,2m+1)上不是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四邊形ABCD中,DC∥AB,AD⊥AB,AB=4,AD=DC=2,E,F(xiàn)分別為AD,BC的中點(diǎn),將梯形ABCD沿EF折起,使得二面角D-EF-A為直二面角
(1)求折起后BD與CF所成角的余弦值;
(2)求二面角F-BC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方體ABC-A1B1C1D1中,M是棱BB1的中點(diǎn).
(1)求直線A1M與平面AMC1所成角的正弦值;
(2)求二面角A-MC1-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{a}{2}$x2+bx+c,其中a>0,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為x軸.
(1)若x=1為f(x)的極值點(diǎn),求f(x)的解析式;
(2)若過點(diǎn)(0,2)可作曲線y=f(x)的三條不同切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)P(x,y)是函數(shù)y=f(x)的圖象上一點(diǎn),向量$\overrightarrow{a}$=(1,(x-2)5),$\overrightarrow$=(1,y-2x),且滿足$\overrightarrow{a}$∥$\overrightarrow$,數(shù)列{an}是公差不為0的等差數(shù)列,若f(a1)+f(a2)+…+f(a9)=36,則a1+a2+…+a9=(  )
A.0B.9C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某學(xué)科測試中要求考生從A,B,C三道題中任選一題作答,考試結(jié)束后,統(tǒng)計(jì)數(shù)據(jù)顯示共有600名學(xué)生參加測試,選擇A,B,C三題答卷數(shù)如表:
ABC
答卷數(shù)180300120
(Ⅰ)某教師為了解參加測試的學(xué)生答卷情況,現(xiàn)用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應(yīng)分別從選擇B,C題作答的答卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)問中被抽出的答卷中,A,B,C三題答卷得優(yōu)的份數(shù)都是2,從被抽出的A,B,C三題答卷中再各抽出1份,求這3份答卷中恰有1份得優(yōu)的概率;
(Ⅲ)測試后的統(tǒng)計(jì)數(shù)據(jù)顯示,B題的答卷得優(yōu)的有100份,若以頻率作為概率,在(Ⅰ)問中被抽出的選擇B題作答的答卷中,記其中得優(yōu)的份數(shù)為X,求X的分布列及其數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊(cè)答案