【題目】已知梯形ABCD中,ADBC,ABC =BAD =,AB=BC=2AD=4E、F分別是ABCD上的點(diǎn),EFBC,AE = GBC的中點(diǎn)。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以F、BC、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;

2)當(dāng) 取得最大值時(shí),求二面角D-BF-C的余弦值.

【答案】(1) 有最大值為;(2) 二面角的余弦值為:-.

【解析】試題分析:(1)由平面, ,可得,進(jìn)而由面面垂直的性質(zhì)定理得到平面,進(jìn)而建立空間坐標(biāo)系,可得的解析式,根據(jù)二次函數(shù)的性質(zhì),易求出有最大值;(2)根據(jù)(1)的結(jié)論平面的一個(gè)法向量為,利用向量垂直數(shù)量積為零列方程組求出平面的法向量,代入向量夾角公式即可得到二面角的余弦值.

試題解析:(1)∵平面平面,AE⊥EF,

∴AE⊥面平面,AE⊥EF,AE⊥BE,又BE⊥EF,故可如圖建立空間坐標(biāo)系E-xyz.則A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),

E(0,0,0)∵AD∥面BFC,

所以VA-BFC

,即時(shí)有最大值為

(2)設(shè)平面DBF的法向量為,∵AE=2, B(2,0,0),

D(0,2,2),F(xiàn)(0,3,0),∴ (-2,2,2),

,即

x=3,則y=2,z=1,∴

面BCF的一個(gè)法向量為

則cos<>=.

由于所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為:-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組為了解學(xué)生每周用于體育鍛煉時(shí)間的情況,在甲、乙兩所學(xué)校隨機(jī)抽取了各50名學(xué)生,做問卷調(diào)查,并作出如下頻率分布直方圖:

(1)根據(jù)直方圖計(jì)算:兩所學(xué)校被抽取到的學(xué)生每周用于體育鍛煉時(shí)間的平均數(shù);
(2)在這100名學(xué)生中,要從每周用于體育鍛煉時(shí)間不低于10小時(shí)的學(xué)生中選出3人,該3人中來自乙學(xué)校的學(xué)生數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D為棱AC的中點(diǎn),側(cè)面A1ACC1為邊長為2的菱形,AC⊥CB,BC=1.

(1)證明:AC1⊥平面A1BC;
(2)求二面角B﹣A1C﹣B1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為p2= ,定點(diǎn)A(0,﹣ ),F(xiàn)1 , F2是圓錐曲線C的左、右焦點(diǎn),直線l經(jīng)過點(diǎn)F1且平行于直線AF2
(1)求圓錐曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓錐曲線C交于M,N兩點(diǎn),求|F1M||F1N|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)當(dāng)=-1時(shí),求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明;

(2)若對(duì)恒成立,求的取值范圍;

(3)討論的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實(shí)數(shù)a的取值范圍是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解男性家長和女性家長對(duì)高中學(xué)生成人禮儀式的接受程度,某中學(xué)團(tuán)委以問卷形式調(diào)查了位家長,得到如下統(tǒng)計(jì)表:

男性家長

女性家長

合計(jì)

贊成

無所謂

合計(jì)

1)據(jù)此樣本,能否有的把握認(rèn)為接受程度與家長性別有關(guān)?說明理由;

2)學(xué)校決定從男性家長中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持贊成態(tài)度的概率.

查看答案和解析>>

同步練習(xí)冊答案