已知函數(shù)y=f(x)的定義域?yàn)镽,且對(duì)任意a,b∈R,都有f(a+b)=f(a)+f(b).且當(dāng)x>0時(shí),f(x)<0恒成立,f(3)=-3.
(1)證明:函數(shù)y=f(x)是R上的減函數(shù);
(2)證明:函數(shù)y=f(x)是奇函數(shù);
(3)試求函數(shù)y=f(x)在[m,n](m,n∈N*)上的值域.
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)x1>x2,由已知可得f(x1-x2)<0,再利用f(a+b)=f(a)+f(b)及減函數(shù)的定義即可證明.
(2)令a=b=0,則可得f(0)=0;再令a=x,b=-x,即可證明f(x)是奇函數(shù).
(3)由(1)的結(jié)論可知f(m)、f(n)分別是函數(shù)y=f(x)在[m、n]上的最大值與最小值,故求出f(m)與f(n)就可得所求值域.
解答: 證明:(1)設(shè)x1>x2,則x1-x2>0,∴f(x1-x2)<0,
而f(a+b)=f(a)+f(b),
∴f(x1)=f(x1-x2+x2)=f(x1-x2)+f(x2)<f(x2
∴函數(shù)y=f(x)是R上的減函數(shù);
(2)證明由f(a+b)=f(a)+f(b)得f(x-x)=f(x)+f(-x)
即f(x)+f(-x)=f(0),而令a=b=0可得f(0)=0
∴f(-x)=-f(x),即函數(shù)y=f(x)是奇函數(shù),
(3)解:由函數(shù)y=f(x)是R上的單調(diào)減函數(shù),
∴y=f(x)在[m,n]上也為單調(diào)減函數(shù).
∴y=f(x)在[m,n]上的最大值為f(m),最小值為f(n).
∴f(n)=f[1+(n-1)]=f(1)+f(n-1)=2f(1)+f(n-2)═nf(1).
同理,f(m)=mf(1).
∵f(3)=-3,∴f(3)=3f(1)=-3.
∴f(1)=-1.∴f(m)=-m,f(n)=-n.
因此,函數(shù)y=f(x)在[m,n]上的值域?yàn)閇-n,-m].
點(diǎn)評(píng):本題考查了抽象函數(shù)的奇偶性和單調(diào)性,深刻理解函數(shù)奇偶性和單調(diào)性的定義及充分利用已知條件是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-2
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在R上的單調(diào)性;
(3)求f(x)在區(qū)間[-3,3]上的值域;
(4)若任意x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)為單調(diào)函數(shù),且對(duì)任意x∈R,恒有f(f(x)-2x)=-
1
2
,則函數(shù)f(x)的零點(diǎn)是(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線x2-
y2
9
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的左右焦點(diǎn),且<
PF1
,
PF2
>=120°,則|
PF1
+
PF2
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=4,滿足an+2=
5
3
an+1-
2
3
an
,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={(x,y)|x+y<4,x,y∈N*},則集合P的非空子集個(gè)數(shù)是(  )
A、2B、3C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線ax2+by2=12的兩條動(dòng)弦MA,MB所在直線的斜率分別為k1,k2
(1)已知a=b=3且A(-2,0),B(2,0),試證明:k1k2為定值.
(2)已知a=3,b=4.
(i)若A(-2,0),B(2,0),試判斷k1k2是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
(ii)若定點(diǎn)M(1,-
3
2
)且k1k2=
3
4
,試判斷直線AB是否過一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-(2a+1)x+(4a-2)lnx(a∈R).
(Ⅰ)若函數(shù)f(x)在x=3處取得極值,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a≤
3
2
時(shí),討論f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,為了測(cè)量河對(duì)岸兩個(gè)建筑物C,D兩點(diǎn)之間的距離,在河岸這邊選取點(diǎn)A,B,測(cè)得∠BAC=45°,∠DAC=75°,∠ABD=30°,∠DBC=45°,又已知AB=
3
km,A,B,C,D在同一平面內(nèi),試求C,D兩點(diǎn)之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案