分析 化簡可得$\frac{2a+b}{a}$+$\frac{a}{2a+b}$,從而化為判斷函數(shù)y=x+$\frac{1}{x}$的單調(diào)性,再確定$\frac{2a+b}{a}$的取值范圍,由題意知$\left\{\begin{array}{l}{b≥0}\\{2+2a+b≤0}\\{8+4a+b≥0}\end{array}\right.$,從而利用線性規(guī)劃確定$\frac{2a+b}{a}$∈[$\frac{2}{3}$,2],從而解得.
解答 解:∵$\frac{{5{a^2}+4ab+{b^2}}}{{2{a^2}+ab}}$=$\frac{(2a+b)^{2}+{a}^{2}}{a(2a+b)}$
=$\frac{2a+b}{a}$+$\frac{a}{2a+b}$,
∵α,β是方程2x2+2ax+b=0的兩根,且α∈[0,1],β∈[1,2],
∴$\left\{\begin{array}{l}{b≥0}\\{2+2a+b≤0}\\{8+4a+b≥0}\end{array}\right.$,
作平面區(qū)域如下,
,
$\frac{y}{x}$的幾何意義是點(x,y)與點(0,0)的連線的斜率,
結(jié)合圖象可知,-$\frac{4}{3}$≤$\frac{y}{x}$≤0,
故-$\frac{4}{3}$≤$\frac{a}$≤0,
故$\frac{2a+b}{a}$∈[$\frac{2}{3}$,2],
而y=x+$\frac{1}{x}$在[$\frac{2}{3}$,1)上單調(diào)遞減,在[1,2]上單調(diào)遞增;
且$\frac{2}{3}$+$\frac{3}{2}$=$\frac{13}{6}$,1+1=2,2+$\frac{1}{2}$=$\frac{5}{2}$;
故$\frac{2a+b}{a}$+$\frac{a}{2a+b}$∈[2,$\frac{5}{2}$];
故答案為:[2,$\frac{5}{2}$].
點評 本題考查了學(xué)生的化簡運算能力與線性規(guī)劃的應(yīng)用,同時考查了對勾函數(shù)的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | 12 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com