A. | (-∞,$\frac{1}{9}$] | B. | [$\frac{1}{9}$,+∞) | C. | (-∞,$\frac{1}{9}$) | D. | ($\frac{1}{9}$,+∞) |
分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)在區(qū)間(0,$\frac{1}{3}$)上大于等于0恒成立,得到b≤$\frac{2-5x}{3}$對(duì)任意x∈(0,$\frac{1}{3}$)恒成立.由單調(diào)性求出$\frac{2-5x}{3}$的范圍得答案.
解答 解:由f(x)=(x2+bx+b)$\sqrt{1-2x}$,得:f′(x)=$\frac{-5{x}^{2}-3bx+2x}{\sqrt{1-2x}}$.
由f(x)在區(qū)間(0,$\frac{1}{3}$)上單調(diào)遞增,
得f′(x)≥0對(duì)任意x∈(0,$\frac{1}{3}$)恒成立.
即-5x2-3bx+2x≥0對(duì)任意x∈(0,$\frac{1}{3}$)恒成立.
∴b≤$\frac{2-5x}{3}$對(duì)任意x∈(0,$\frac{1}{3}$)恒成立.
∵$\frac{2-5x}{3}$>$\frac{2-5×\frac{1}{3}}{3}$=$\frac{1}{9}$.
∴b≤$\frac{1}{9}$.
∴b的取值范圍是(-∞,$\frac{1}{9}$],
故選:A.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com